POJ2195 Going Home 【最小费用流】+【最佳匹配图二部】
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 18169 | Accepted: 9268 |
Description
a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates
there is a little man on that point.

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
Sample Input
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
Sample Output
2
10
28
Source
题意:给定一张N*M的图。当中‘.’为空地,小人能够走,‘m’为小人,‘H’为房子。小人能够路过。小人一次仅仅能沿着上下左右走一个格子。如今要求每一个小人都进入一个不同的房子。求小人走的步数最小数。
题解:这题能够看成最小费用流来解,当中小人到房子的距离为费用,容量为1。设置源点到每一个小人的容量为1。费用为0,每一个房子到汇点费用为0。容量为1,剩下的就是求最小费用流了。
版本号一:最小费用流:125ms
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <queue> const int maxn = 205;
const int inf = 0x3f3f3f3f;
char str[maxn];
int head[maxn], n, m; // n rows, m columns
struct Node {
int x, y;
} A[maxn], B[maxn];
int id1, id2, id, source, sink;
struct node {
int f, c, u, v, next;
} E[maxn * maxn];
bool vis[maxn];
int pre[maxn], dist[maxn]; void addEdge(int u, int v, int c, int f) {
E[id].u = u; E[id].v = v;
E[id].c = c; E[id].f = f;
E[id].next = head[u]; head[u] = id++; E[id].u = v; E[id].v = u;
E[id].c = 0; E[id].f = -f;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int i, j, dis; Node e;
id = id1 = id2 = 0;
for(i = 0; i < n; ++i) {
scanf("%s", str);
for(j = 0; str[j] != '\0'; ++j) {
if(str[j] == '.') continue;
e.x = i; e.y = j;
if(str[j] == 'm') A[id1++] = e;
else B[id2++] = e;
}
} memset(head, -1, sizeof(head));
source = id1 + id2; sink = source + 1;
for(i = 0; i < id1; ++i) {
for(j = 0; j < id2; ++j) {
dis = abs(A[i].x - B[j].x) + abs(A[i].y - B[j].y);
addEdge(i, id1 + j, 1, dis); // uvcf
}
addEdge(source, i, 1, 0);
}
for(j = 0; j < id2; ++j)
addEdge(id1 + j, sink, 1, 0);
} bool SPFA(int start, int end) {
std::queue<int> Q; int i, u, v;
memset(vis, 0, sizeof(vis));
memset(pre, -1, sizeof(pre));
memset(dist, 0x3f, sizeof(pre));
Q.push(start); vis[start] = 1; dist[start] = 0;
while(!Q.empty()) {
u = Q.front(); Q.pop();
vis[u] = 0;
for(i = head[u]; i != -1; i = E[i].next) {
v = E[i].v;
if(E[i].c && dist[v] > dist[u] + E[i].f) {
dist[v] = dist[u] + E[i].f;
pre[v] = i;
if(!vis[v]) {
Q.push(v); vis[v] = 1;
}
}
}
}
return dist[end] != inf;
} int Min_Cost_Flow(int start, int end) {
int ans_cost = 0, u, minCut;
while(SPFA(start, end)) {
minCut = inf;
for(u = pre[end]; u != -1; u = pre[E[u].u]) {
if(minCut > E[u].c) minCut = E[u].c;
}
for(u = pre[end]; u != -1; u = pre[E[u].u]) {
E[u].c -= minCut; E[u^1].c += minCut;
}
ans_cost += minCut * dist[end];
}
return ans_cost;
} void solve() {
printf("%d\n", Min_Cost_Flow(source, sink));
} int main() {
// freopen("stdin.txt", "r", stdin);
while(scanf("%d%d", &n, &m), n | m) {
getMap();
solve();
}
return 0;
}
版本号二:KM:0ms
#include <stdio.h>
#include <string.h>
#include <stdlib.h> const int maxn = 105;
const int largeNum = 210;
const int inf = 0x3f3f3f3f;
int n, m; // n rows, m columns
char str[maxn];
struct Node {
int x, y;
} A[maxn], B[maxn];
int id1, id2;
int G[maxn][maxn];
int Lx[maxn], Ly[maxn];
int match[maxn];
bool visx[maxn], visy[maxn];
int slack[maxn]; void getMap() {
int i, j, dis; Node e;
id1 = id2 = 0;
for(i = 0; i < n; ++i) {
scanf("%s", str);
for(j = 0; str[j] != '\0'; ++j) {
if(str[j] == '.') continue;
e.x = i; e.y = j;
if(str[j] == 'm') A[id1++] = e;
else B[id2++] = e;
}
}
memset(G, 0, sizeof(G));
for(i = 0; i < id1; ++i) {
for(j = 0; j < id2; ++j) {
G[i][j] = largeNum - (abs(A[i].x - B[j].x) + abs(A[i].y - B[j].y));
}
}
} bool DFS(int cur) {
int t, y;
visx[cur] = true;
for(y = 0; y < id2; ++y) {
if(visy[y]) continue;
t = Lx[cur] + Ly[y] - G[cur][y];
if(t == 0) {
visy[y] = true;
if(match[y] == -1 || DFS(match[y])) {
match[y] = cur; return true;
}
} else if(slack[y] > t) slack[y] = t;
}
return false;
} int KM() {
int i, j, x, d, ret;
memset(match, -1, sizeof(match));
memset(Ly, 0, sizeof(Ly));
for(i = 0; i < id1; ++i) {
Lx[i] = -inf;
for(j = 0; j < id2; ++j)
if(G[i][j] > Lx[i]) Lx[i] = G[i][j];
}
for(x = 0; x < id1; ++x) {
memset(slack, 0x3f, sizeof(slack));
while(true) {
memset(visx, 0, sizeof(visx));
memset(visy, 0, sizeof(visy));
if(DFS(x)) break;
d = inf;
for(i = 0; i < id2; ++i)
if(!visy[i] && d > slack[i])
d = slack[i];
for(i = 0; i < id1; ++i)
if(visx[i]) Lx[i] -= d;
for(i = 0; i < id2; ++i)
if(visy[i]) Ly[i] += d;
else slack[i] -= d;
}
}
ret = 0;
for(i = 0; i < id1; ++i)
if(match[i] > -1) ret += G[match[i]][i];
return ret;
} void solve() {
printf("%d\n", largeNum * id1 - KM());
} int main() {
// freopen("stdin.txt", "r", stdin);
while(scanf("%d%d", &n, &m), n | m) {
getMap();
solve();
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
POJ2195 Going Home 【最小费用流】+【最佳匹配图二部】的更多相关文章
- Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)
Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...
- 二分图匹配之最佳匹配——KM算法
今天也大致学了下KM算法,用于求二分图匹配的最佳匹配. 何为最佳?我们能用匈牙利算法对二分图进行最大匹配,但匹配的方式不唯一,如果我们假设每条边有权值,那么一定会存在一个最大权值的匹配情况,但对于KM ...
- opencv学习之路(34)、SIFT特征匹配(二)
一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...
- KM(Kuhn-Munkres)算法求带权二分图的最佳匹配
KM(Kuhn-Munkres)算法求带权二分图的最佳匹配 相关概念 这个算法个人觉得一开始时有点难以理解它的一些概念,特别是新定义出来的,因为不知道是干嘛用的.但是,在了解了算法的执行过程和原理后, ...
- hdu 2063 过山车(二分图最佳匹配)
经典的二分图最大匹配问题,因为匈牙利算法我还没有认真去看过,想先试试下网络流的做法,即对所有女生增加一个超级源,对所有男生增加一个超级汇,然后按照题意的匹配由女生向男生连一条边,跑一个最大流就是答案( ...
- HDU 1533 KM算法(权值最小的最佳匹配)
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 二分图带权匹配、最佳匹配与KM算法
---------------------以上转自ByVoid神牛博客,并有所省略. [二分图带权匹配与最佳匹配] 什么是二分图的带权匹配?二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和 ...
- 【栈思想、DP】NYOJ-15 括号匹配(二)
括号匹配(二) 描述 给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能 ...
- [NYOJ 15] 括号匹配(二)
括号匹配(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 给你一个字符串,里面只包含"(",")","[&qu ...
随机推荐
- ipconfig /flushdns 清除系统DNS缓存
1.ipconfig /flushdns的作用 ipconfig /flushdns 这是清除DNS缓存用的. 当訪问一个站点时系统将从DNS缓存中读取该域名所相应的IP地址,当查找不到时就会到系统中 ...
- mysql主键设置成auto_increment时,进行并发性能測试出现主键反复Duplicate entry 'xxx' for key 'PRIMARY'
mysql主键设置成auto_increment时,进行并发性能測试出现主键反复Duplicate entry 'xxx' for key 'PRIMARY' 解决方法: 在my.cnf的[mysql ...
- hdu2242(树形dp+tarjan+缩点)
hdu2242 http://acm.hdu.edu.cn/showproblem.php?pid=2242 给定n,m表示n个点,m条边 每个点有个权值 问我们删除两某条边(割边)后将图分为两个部分 ...
- WPF学习之绘图和动画--DarrenF
Blend作为专门的设计工具让WPF如虎添翼,即能够帮助不了解编程的设计师快速上手,又能够帮助资深开发者快速建立图形或者动画的原型. 1.1 WPF绘图 与传统的.net开发使用GDI+进行绘图不 ...
- python可变参数调用函数的问题
已使用python实现的一些想法,近期使用python这种出现的要求,它定义了一个函数,第一种是一般的参数,第二个参数是默认,并有可变参数.在第一项研究中python时间,不知道keyword可变参数 ...
- 重新想象 Windows 8 Store Apps (7) - 控件之布局控件: Canvas, Grid, StackPanel, VirtualizingStackPanel, WrapGrid, VariableSizedWrapGrid
原文:重新想象 Windows 8 Store Apps (7) - 控件之布局控件: Canvas, Grid, StackPanel, VirtualizingStackPanel, WrapGr ...
- uva 11396Claw Decomposotion(二分图判定)
题目大意:给出一个简单无向图,每一个点的度为3.推断是否能将此图分解成若干爪的形式.使得每条边都仅仅出如今唯一的爪中. (点能够多次出如今爪中) 这道题实质上就是问这个图是否为二分图,dfs判定 ...
- W5500 keep-alive的用途及使用
大家是否遇到过这种问题,W5500作为server已经建立连接,突然网线掉了,然后再去连接W5500.就连不上了. 为什么?以下对这个问题进行解释说明,并提出解决的方法. 图1中的上位机程序作为cli ...
- ubuntu 安装输入法(fcitx)
目前搜狗输入法是基于fcitx框架下的,所以我们得安装fcitx才行 首要得卸载Ubuntu默认的ibus输入法:sudo apt-get remove ibus 然后添加fcitx的nightlyP ...
- LCA 学习算法 (最近的共同祖先)poj 1330
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20983 Accept ...