Cow Bowling
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14210   Accepted: 9432

Description

The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:

          7

        3   8

      8   1   0

    2   7   4   4

  4   5   2   6   5

Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest
score wins that frame. 



Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

Input

Line 1: A single integer, N 



Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

Output

Line 1: The largest sum achievable using the traversal rules

Sample Input

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Output

30
数字三角形问题。。能够自底向上坐dp dp[i][j]=ma[i][j]+max(dp[i+1][j],dp[i+1][j+1])
巨水 。。想当初半年前自己懵懵懂懂的刷dp啥都不懂。。哎  真是个悲伤的故事。。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define ll long long
#define maxn 360
#define pp pair<int,int>
#define INF 0x3f3f3f3f
#define max(x,y) ( ((x) > (y)) ? (x) : (y) )
#define min(x,y) ( ((x) > (y)) ? (y) : (x) )
using namespace std;
int n,dp[maxn][maxn],ma[maxn][maxn];
void solve()
{
for(int i=0;i<n;i++)
dp[n-1][i]=ma[n-1][i];
for(int i=n-2;i>=0;i--)
for(int j=0;j<=i;j++)
dp[i][j]=max(ma[i][j]+dp[i+1][j],ma[i][j]+dp[i+1][j+1]);
printf("%d\n",dp[0][0]);
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
for(int j=0;j<=i;j++)
scanf("%d",&ma[i][j]);
memset(dp,0,sizeof(dp));
solve();
}
return 0;
}

也能够自顶向下记忆化搜索。。然后状态数组含义都差点儿相同 。。个人觉着搜索比較好写。。。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define ll long long
#define maxn 360
#define pp pair<int,int>
#define INF 0x3f3f3f3f
#define max(x,y) ( ((x) > (y)) ? (x) : (y) )
#define min(x,y) ( ((x) > (y)) ? (y) : (x) )
using namespace std;
int n,dp[maxn][maxn],ma[maxn][maxn];
int dfs(int x,int y)
{
if(x==n-1)return ma[x][y];
if(dp[x][y]>=0)return dp[x][y];
dp[x][y]=0;
dp[x][y]+=(ma[x][y]+max(dfs(x+1,y),dfs(x+1,y+1)));
return dp[x][y];
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
for(int j=0;j<=i;j++)
scanf("%d",&ma[i][j]);
memset(dp,-1,sizeof(dp));
printf("%d\n",dfs(0,0));
}
return 0;
}

POJ 3176-Cow Bowling(DP||记忆化搜索)的更多相关文章

  1. POJ 3176 Cow Bowling(dp)

    POJ 3176 Cow Bowling 题目简化即为从一个三角形数列的顶端沿对角线走到底端,所取得的和最大值 7 * 3 8 * 8 1 0 * 2 7 4 4 * 4 5 2 6 5 该走法即为最 ...

  2. poj 1163 The Triangle &amp;poj 3176 Cow Bowling (dp)

    id=1163">链接:poj 1163 题意:输入一个n层的三角形.第i层有i个数,求从第1层到第n层的全部路线中.权值之和最大的路线. 规定:第i层的某个数仅仅能连线走到第i+1层 ...

  3. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  4. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  5. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  6. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  7. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  8. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  9. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

随机推荐

  1. POJ2029——Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3656   Accepte ...

  2. JavaScipt面向对象编程----闭包

    在javascript中闭包是一个非常不好理解的概念,可是确实一个不可逃避的东西,那么今天我们就来一起学习一下闭包. 什么是闭包? 闭包:官方"的解释是:闭包是一个拥有很多变量和绑定了这些变 ...

  3. 3.cocos2dx它Menu,由menu为了实现场景切换

     1 头文件 TMenu.h #ifndef __TMENU_H__ #define __TMENU_H__ #include "cocos2d.h" USING_NS_CC; ...

  4. War文件部署(转)

    其实,开始要求将源码压缩成War文件时,一头雾水! 公司项目要求做CAS SSO单点登录 也就是这玩意.... 其实war文件就是Java中web应用程序的打包.借用一个老兄的话,“当你一个web应用 ...

  5. crm2011i创建nt类型字段

    using System;     using Microsoft.Xrm.Sdk;     using Microsoft.Xrm.Sdk.Messages;     using Microsoft ...

  6. XCODE4.6创建我的第一次ios规划:hello

    对于非常多刚開始学习的人来说,肯定希望自己尝试不用傻瓜的"Single View Application"模板创建一个含有View的窗体.而是希望能从零開始,先建一个空的框架.然后 ...

  7. Nancy 框架学习

    Nancy 框架 1.是一个轻量级用于构建http相应的web框架: 2.与mvc类似,有自己的路由机制: 3.可以处理 DELETE ,  GET ,  HEAD ,  OPTIONS ,  POS ...

  8. Struts2 拦截器—拦截action

    对于拦截器的基本使用这里我就懒得打字了,我这里就讲下如何用 Struts2 拦截器 拦截action.这是我个人的想法,如果有什么不对的,或者你们有什么更好的方法.请多多留言! 拦截器的默认拦截的方法 ...

  9. HDU 5095 Linearization of the kernel functions in SVM(模拟)

    主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5095 Problem Description SVM(Support Vector Machine) ...

  10. Redis系列之(一):10分钟玩转Redis(转)

    1. Redis介绍 Redis是一个开源的使用ANSI C语言编写.基于内存的Key-Value数据库. 它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集 ...