主题链接:

http://acm.zju.edu.cn/onlinejudge/showProblem.do?

problemId=4535

How Many Sets I


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Give a set S, |S| = n, then how many ordered set group (S1, S2, ..., Sk) satisfies S1 ∩ S2 ∩ ... ∩ Sk =
∅. (Si is a subset of S, (1 <= i <= k))

Input

The input contains multiple cases, each case have 2 integers in one line represent n and k(1 <= k <= n <= 231-1), proceed to the end of
the file.

Output

Output the total number mod 1000000007.

Sample Input

1 1
2 2

Sample Output

1
9

Author: QU, Zhe

Contest: ZOJ Monthly, October 2011

Submit    

problemId=4535" style="color:blue; text-decoration:none">Status

题目意思:

已知|S|=n。给定k,求S1 ∩ S2 ∩
... ∩ Sk = ∅,当中Si是S的子集(i<=k)的种数。

n,k<=2^31-1

解题思路:

容斥原理

反向考虑。如果S1 ∩ S2 ∩
... ∩ Sk 不等于 ∅。则至少存在一个元素S1。S2。...,Sk都包括。

枚举都包括的元素.总的种数为(2^n)^k=2^(nk)

假设至少都包括一个元素,则种数为C(n,1)*(2^(n-1))^k=C(n,1)*2^((n-1)k)

假设至少都包括两个元素,则种数为C(n,2)*(2^(n-2))^k=C(n,2)*2^((n-2)k)

假设至少都包括i个元素,则种数为C(n,i)*(2^(n-i))^k=C(n,i)*2^((n-i)k)

减去包括一个的加上包括两个的减去包括3个的,如此类推。能够得出一下公式:

2^(nk)+C(n,1)*2^((n-1)k)-C(n,2)*2^((n-2)k)+...(-1)^i*C(n,i)*2^((n-i)k)+.....=(2^k-1)^n
 (通过二项式公式)

所以答案转化为求(2^k-1)^n了,直接高速幂就可以。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; LL n,k; LL quick(LL a,LL b)
{
LL res=1; while(b)
{
if(b&1)
res=(res*a)%M;
b>>=1;
a=a*a%M;
}
return res;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(~scanf("%lld%lld",&n,&k))
{
LL ans=(quick(2,k)-1+M)%M; ans=quick(ans,n); printf("%lld\n",ans);
}
return 0;
}

[容斥原理] zoj 3556 How Many Sets I的更多相关文章

  1. zoj——3556 How Many Sets I

    How Many Sets I Time Limit: 2 Seconds      Memory Limit: 65536 KB Give a set S, |S| = n, then how ma ...

  2. ZOJ 3556 How Many Sets I

    How Many Sets I Time Limit: 2 Seconds      Memory Limit: 65536 KB Give a set S, |S| = n, then how ma ...

  3. zoj 3557 How Many Sets II

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  4. zoj——3557 How Many Sets II

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  5. ZOJ 3556

    终于做出来了,激动.... 这道题隐藏得深啊,但若推导下来,就变简单了. 首先,一个集合的子集的个数为2^n=s.注意了,题目求的是有序集合组,并且每个集合是可以重复使用的,怎么办呢?这就要想到多重集 ...

  6. 组合数们&&错排&&容斥原理

    最近做了不少的组合数的题这里简单总结一下下 1.n,m很大p很小 且p为素数p要1e7以下的 可以接受On的时间和空间然后预处理阶乘 Lucas定理来做以下是代码 /*Hdu3037 Saving B ...

  7. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  8. ZOJ 3233 Lucky Number --容斥原理

    这题被出题人给活活坑了,题目居然理解错了..哎,不想多说. 题意:给两组数,A组为幸运基数,B组为不幸运的基数,问在[low,high]区间内有多少个数:至少被A组中一个数整除,并且不被B中任意一个数 ...

  9. ZOJ 3687 The Review Plan I 容斥原理

    一道纯粹的容斥原理题!!不过有一个trick,就是会出现重复的,害我WA了几次!! 代码: #include<iostream> #include<cstdio> #inclu ...

随机推荐

  1. BZOJ 2330: [SCOI2011]糖果( 差分约束 )

    坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...

  2. 01-UIKit

    目录: 一.视图和控制器 二.interface Builder 回到顶部 一.视图和控制器 1 视图(view)ios程序运行期间用户所能看见的东西都可以认为是视图,比如UIwindow就是一个视图 ...

  3. Unity 3D 建立开发环境

    之后的基本方向 ios游戏开发,基础教程http://www.devdiv.com/unity_d_-thread-128068-1-1.html,学习Unity 3D游戏开发. 应该昨天表示,读了一 ...

  4. 浅谈PPM (Project Portfolio Management) - 1

    前言: 本文以纯理论性的PPM解说为主,不会涉及到具体怎样实施,我会在以后介绍具体的PPM实施方案介绍. PPM,可能非常多人并不清楚甚至可能没听说过,这是一个近些年才流行起来的概念,是Project ...

  5. vi命令提示:Terminal too wide

    putty: 在我的电脑上,缺省的设置是这样的: localhost:~ eygle$ stty -aspeed 9600 baud; 51 rows; 171 columns; 在远程编辑文件时,减 ...

  6. javascript笔记整理(函数)

    javascript函数的声明和调用将完成某一特定功能的代码集合起来,可以重复使用的代码块. 一.函数的声明方式(创建) A.基本语法(function  关键字)function 函数名([参数1] ...

  7. HDU 4882 ZCC Loves Codefires(贪心)

     ZCC Loves Codefires Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  8. linux: 可重入函数与不可重入函数

    1. 可重入函数与线程安全 摘自 多线程和多进程的区别(小结) http://blog.csdn.net/hairetz/article/details/4281931 要确保函数线程安全,主要需要考 ...

  9. 重操JS旧业第九弹:函数表达式

    函数表达式,什么概念,表达式中的函数表达式. 1 函数申明 function 函数名([函数参数]){ //函数体 } js中无论像这样的显示函数什么放在调用之前还是调用之后,都不影响使用,因为js解 ...

  10. 重操JS旧业第二弹:数据类型与类型转换

    一 数据类型 1 js中的数据类型 1.1 数据类型列举 1)number类型 2)boolean类型 3)string类型 4)对象类型 5)函数类型 6)undefined类型 1.2 数据类型获 ...