法线变换

法线(normal),也被称为法矢量(normal vector)。在以前我们已经讲过如何使用变换矩阵来变换一个顶点或方向矢量,但法线是需要我们特殊处理的一种方向矢量。在游戏中,模型的顶点往往会携带额外的信息,而顶点法线就是其中一种信息。当我们变换一个模型的时候,不仅需要变换它的顶点,还需要变换顶点法线,以便在后续处理(如片元着色器)中计算光照等。
一般来说,点和绝大部分方向矢量都可以使用同一个4×4或3×3的变换矩阵Ma->b把其从坐标空间A变换到坐标空间B中。但在变换法线的时候,如果使用同一个变换矩阵,可能就无法确保维持法线的垂直型。下面就来了解一下为什么会出现这样的问题。
我们先来了解另一种方向矢量——切线(tangent),也被称为切矢量(tangent vector)。与法线类似,切线往往也是模型顶点携带的一种信息。它通常与纹理空间对其,而且与法线方向垂直,如图所示。

由于切线是由两个顶点之间的差值计算得到的,因此我们可以直接使用用于变换顶点的变换矩阵来变换切线。假设,我们使用3×3变换矩阵Ma->b来变换顶点(注意,这里涉及到的变换矩阵都是3×3矩阵,不考虑平移变换,这因为切线和法线都是矢量,不会受平移影响),可以由下面的式子直接得到变换后的切线:

其中Ta和Tb分别表示在空间坐标A下和坐标空间B下的切线方向。但如果直接食用Ma->b来变换法线,得到的新的法线可能就不会与表面垂直了,下图给出了这样的一个例子:

那么,我们应该用哪个矩阵来变换法线呢?我们可以由数学约束条件来推出这个矩阵。我们知道一个顶点的切线Ta和法线Na必须满足垂直条件,即Ta·Na=0。给定变换矩阵Ma->b,我们已经知道Tb=Ma->bTa。我们现在想要找到一个矩阵G来变换法线Na,使得变换后的法线让然与切线垂直。即

对上式进行一些推导可得

由于

因此如果

那么上式即可成立。也就是说如果

即使用原变换矩阵的逆转置矩阵来变换法线就可以得到正确的结果。
值得注意的是,如果变换矩阵Ma->b是正交矩阵,那么

因此

也就是说我们可以使用用于变换顶点的变换矩阵来直接变换法线。如果变换只包括旋转变换,那么这个变换矩阵就是正交矩阵。而如果变换只包含旋转和统一缩放,而不包含非统一缩放,我们利用统一缩放系数k来得到变换矩阵Ma->b的逆转置矩阵

这样就可以避免计算逆矩阵的过程。而如果变换中包含了非统一的变换,那么我们就必须要求解逆矩阵来得到变换法线的矩阵。

第三章 学习Shader所需的数学基础(4)的更多相关文章

  1. 第三章 学习Shader所需的数学基础(2)

    目录 1.坐标空间 1.2 坐标空间的变换 @ 1.坐标空间 我们在以前渲染流水线中就接触了坐标空间的变换.例如,在学习顶点着色器流水线阶段时,我们说过,顶点着色器的最基本功能就是把模型的顶点坐标从模 ...

  2. 第三章 学习Shader所需的数学基础(5)

    1. Unity Shader的内置变量(数学篇) 使用Unity写shader的一个好处在于,它提供了很多内置参数,这使得我们不在需要自己手动算一些值.本文给出Unity内置的用于空间变换和摄像机以 ...

  3. 第三章 学习Shader所需的数学基础(3)

    @[TOC] 1. 顶点的坐标空间变换过程 我们知道,在渲染流水线中,一个顶点要经过多个坐标空间的变换才能最终被画在屏幕上.一个顶点最开始是在模型空间中定义的,它最后会被变换到屏幕空间中,得到真正的屏 ...

  4. 第三章 学习Shader所需的数学基础(1)

    1. 笛卡尔坐标系 在游戏中,我们使用的数学大部分都是为了计算位置.距离和角度等变量.而这些就算大部分是在笛卡尔坐标系下进行的. 1.1 二维笛卡尔坐标系 一个二维笛卡尔坐标系包含了两个部分的信息 1 ...

  5. Unity Shader入门精要学习笔记 - 第4章 学习 Shader 所需的数学基础

    摘录自 冯乐乐的<Unity Shader入门精要> 笛卡尔坐标系 1)二维笛卡尔坐标系 在游戏制作中,我们使用的数学绝大部分都是计算位置.距离.角度等变量.而这些计算大部分都是在笛卡尔坐 ...

  6. 学习Shader所需的数学基础(坐标系,点和矢量)

    数学对于计算机图形学的重要性是不言而喻的.在学习Shader之前,首先就要打好数学基础,好在入门Unity Shader所需的数学知识都是线性代数中很基础的的内容.按部就班的来,第一篇文章记录总结的是 ...

  7. 《ORACLE数据库管理与开发》第三章学习之常用函数记录

    <ORACLE数据库管理与开发>第三章学习之常用函数记录 注:文章中的*代表所要操作的列名 1.lower(*)/upper(*),将此列下的值转为小写/大写 2.initcap(*):把 ...

  8. 《Linux内核设计与实现》第三章学习笔记

    第三章  进程管理 姓名:王玮怡  学号:20135116 一.进程 1.进程的含义 进程是处于执行期的程序以及相关资源的总称,程序本身并不是进程,实际上就是正在执行的代码的实时结果.Linux内核通 ...

  9. 20135202闫佳歆--week6 课本第三章学习笔记

    第三章 进程管理 一.进程 1.进程 进程就是处于执行期的程序. 进程就是正在执行的程序代码的实时结果. 进程是处于执行期的程序以及相关的资源的总称. 进程包括代码段和其他资源. 2.线程 执行线程, ...

随机推荐

  1. 死磕 java线程系列之ForkJoinPool深入解析

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:本文基于ForkJoinPool分治线程池类. 简介 随着在硬件上多核处理器的发展和广泛使用,并发编程成为 ...

  2. 题解【洛谷】CF134A

    题解 CF134A [Average Numbers] 这题就是简单的模拟. 只不过要优化一下常数什么的 思路: 为了不浪费时间总是取平均数,直接用一个 S 储存总和,每次都减去 a_i​ 再除以 n ...

  3. 「刷题」Triple

    正解是普通型母函数+FFT. 才学了多项式,做了一道比较好的题了. 首先有三个斧子被偷了. 我们考虑构造一种普通型母函数. 就是说一种多项式吧,我的理解. 系数是方案,下标,也就是所谓的元指数代表的是 ...

  4. elasticsearch操作命令

    总结几个es的curl操作命令: 查询某条数据:curl -XGET http://elasticsearch:9200/company/company/123?pretty 查询索引下数据总量:cu ...

  5. 用js给元素增加链接

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  6. MSF小记

    0x00 Windows,Linux反弹shell生成 Windows: msfvenom -p windows/meterpreter/reverse_tcp lhost=[你的IP] lport= ...

  7. Python OpenCV4趣味应用系列(四)---颜色物体实时检测

    今天,我们来实现一个视频实时检测颜色物体的小实例,视频中主要有三个颜色物体,我们只检测红色和绿色的球状物体,如下图所示: 第一步需要打开视频(或者摄像头): cap = cv2.VideoCaptur ...

  8. 2019CSP游记

    \(CSP2019\)游记 写在前面 考完,终于深刻地认识到省一似乎和我想象的真不是一个难度.也罢,不然为什么\(NOIP\)改了名还是这么有含金量. 考前一天和一群同学们嚷嚷着要去吃散伙饭,说没拿到 ...

  9. 简单的倒叙应用---倒序打印字符串(C语言)

    void reverseStr(char* str){ if(*str=='\0'){ return; } reverseStr(str+1); printf("%c\n",*st ...

  10. Spring Boot2 系列教程(二十四)Spring Boot 整合 Jpa

    Spring Boot 中的数据持久化方案前面给大伙介绍了两种了,一个是 JdbcTemplate,还有一个 MyBatis,JdbcTemplate 配置简单,使用也简单,但是功能也非常有限,MyB ...