使用spark dataSet 和rdd 解决 某个用户在某个地点待了多长时间
现有如下数据文件需要处理
格式:CSV
位置:hdfs://myhdfs/input.csv
大小:100GB
字段:用户ID,位置ID,开始时间,停留时长(分钟)
4行样例:
UserA,LocationA,2018-01-01 08:00:00,60
UserA,LocationA,2018-01-01 09:00:00,60
UserA,LocationB,2018-01-01 10:00:00,60
UserA,LocationA,2018-01-01 11:00:00,60
解读:
样例数据中的数据含义是:
用户UserA,在LocationA位置,从8点开始,停留了60分钟
用户UserA,在LocationA位置,从9点开始,停留了60分钟
用户UserA,在LocationB位置,从10点开始,停留了60分钟
用户UserA,在LocationA位置,从11点开始,停留了60分钟
该样例期待输出:
UserA,LocationA,2018-01-01 08:00:00,120
UserA,LocationB,2018-01-01 10:00:00,60
UserA,LocationA,2018-01-01 11:00:00,60
处理逻辑:
1 对同一个用户,在同一个位置,连续的多条记录进行合并
2 合并原则:开始时间取最早时间,停留时长加和
要求:请使用Spark、MapReduce或其他分布式计算引擎处理
思路:按照按照用户ID和位置ID分组,分组之后按照时间列排序,由于数据之间的存在依赖关系,并且依赖关系比较连续,满足某种关系的数据要进行合并操作,因此使用sql部分的代码很难实现。在这使用的是将Dataset转化为RDD之后使用基于分区进行操作的方法处理数据。拿到相关的数据,按照时间顺序读取,判断,累加等进行处理。
package com.zhf.streaming import java.text.SimpleDateFormat import org.apache.spark.Partitioner
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Dataset, SparkSession} import scala.collection.mutable.ArrayBuffer
case class ResultData(userID:String,locationID:String,startTime:String,endTime:String,stayTime:Long)
object Test {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("test").master("local[*]").getOrCreate()
import spark.implicits._
import org.apache.spark.sql.functions._
val info = spark.read
.format("csv")
.option("path", "src/data/user.csv")
.load()
.toDF("userID", "locationID", "startTimes", "stayMinutes")
.as[(String, String, String, String)] val ds: Dataset[((String, String, String), ResultData)] = info.map {
case (userID, locationID, startTimes, stayMinutes) =>
//让起始时间+停留时间=结束时间
val sd = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
val date = sd.parse(startTimes)
val endTime = sd.format(date.getTime + (stayMinutes.trim.toInt * 60 * 1000))
((userID, locationID, startTimes), ResultData(userID, locationID, startTimes, endTime, stayMinutes.trim.toLong))
}.as[((String, String, String), ResultData)] //按照用户ID和位置ID分组,分组之后按照时间列排序
val newDS: RDD[((String, String, String), ResultData)] = ds.rdd.repartitionAndSortWithinPartitions(new Partitioner {
override def numPartitions: Int = 4 override def getPartition(key: Any): Int = key match {
case (userID, locationID, _) => (userID.hashCode + locationID.hashCode) % numPartitions
case _ => 0
}
})
val result = newDS.mapPartitions(iter => {
val listBuffer = iter.toBuffer
val buffer = ArrayBuffer.empty[ResultData]
var resultData: ResultData = null;
//分区内只有一个元素的情况
if (listBuffer.size == 1) {
resultData = listBuffer(0)._2;
buffer += resultData
} else {
//分区内有多个元素
listBuffer.foreach {
case ((userID, locationID, startTimes), currentData) =>
//初始化赋值
if (resultData == null) {
resultData = ResultData(userID, locationID, startTimes, currentData.endTime, currentData.stayTime)
} else {
//如果当前行的起始时间与上一行的结束时间相同
if (currentData.startTime == resultData.endTime) {
//合并 修改初始值
resultData = ResultData(currentData.userID, currentData.locationID, resultData.startTime, currentData.endTime, resultData.stayTime + currentData.stayTime)
} else {
//不相同的情况下,将上一行结果添加到结果集,并修改初始值
buffer += resultData
resultData = currentData
}
}
}
//最后一个元素对象
if (resultData != null) {
buffer += resultData
}
}
buffer.toIterator
})
result.collect()
.sortBy(_.startTime)
.foreach(println)
}
}
使用spark dataSet 和rdd 解决 某个用户在某个地点待了多长时间的更多相关文章
- 解决使用Touch ID API在回调时界面“长时间卡住”的问题
Touch ID是iOS8上新公开的API,关于详细介绍和用法可以看CocoaChina的这两篇文章:上 和 下,在此篇文章中不再赘述. 我在app中需要的效果是如果touch id验证通过,则页面p ...
- Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...
- Spark计算模型-RDD介绍
在Spark集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed DataSet,RDD),它是逻辑集中的实体,在集群中的多台集群上进行数据分区.通 ...
- Spark学习之RDD编程总结
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...
- 使用Scala编写Spark程序求基站下移动用户停留时长TopN
使用Scala编写Spark程序求基站下移动用户停留时长TopN 1. 需求:根据手机基站日志计算停留时长的TopN 我们的手机之所以能够实现移动通信,是因为在全国各地有许许多多的基站,只要手机一开机 ...
- Spark深入之RDD
目录 Part III. Low-Level APIs Resilient Distributed Datasets (RDDs) 1.介绍 2.RDD代码 3.KV RDD 4.RDD Join A ...
- Spark学习之RDD
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...
- spark教程(三)-RDD认知与创建
RDD 介绍 spark 最重要的一个概念叫 RDD,Resilient Distributed Dataset,弹性分布式数据集,它是 spark 的最基本的数据(也是计算)抽象. 代码中是一个抽象 ...
- Spark——DataFrames,RDD,DataSets、广播变量与累加器
Spark--DataFrames,RDD,DataSets 一.弹性数据集(RDD) 创建RDD 1.1RDD的宽依赖和窄依赖 二.DataFrames 三.DataSets 四.什么时候使用Dat ...
随机推荐
- 小白之入口即化——十分钟看懂while循环,字符串格式化,运算符
while循环 while循环-死循环 while空格+条件+冒号 缩进+循环体 3.打断死循环 break--终止当前循环 while True: print(123) print(234) bre ...
- React躬行记(3)——组件
组件(Component)由若干个React元素组成,包含属性.状态和生命周期等部分,满足独立.可复用.高内聚和低耦合等设计原则,每个React应用程序都是由一个个的组件搭建而成,即组成React应用 ...
- Python学习4——条件、循环及其他语句总结
多种语句 打印语句: 导入语句: 赋值语句: 代码块: 条件语句: 断言: 循环: 推导: pass.dal.exec和eval : 学习到的新函数:(以下函数的应用代码均在IDLE测试通过) ch ...
- c语言进阶14-线性表之链表
一. 线性表的链式存储结构 1. 顺序存储结构不足的解决办法 前面我们讲的线性表的顺序存储结构.它是有缺点的,最大的缺点就是插入和删除时需要移动大量元素,这显然就需要耗费时间.能不能想 ...
- C语言入门8-数组-基本算法
一. 什么是数组 数组就是具有相同数据类型的有序集合. 分为一维数组.二维数组及多维数组. 一维数组就是用一个下标定义的数组 二维数组就是用二个下标定义的数组 我们把具有三个下标及三 ...
- 【剑指offer】面试题(三)
package com.haxianhe.test; /** *题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序, *每一列都按照从上到下递增的顺序排序. *请完成一个函数, *输入这样的一 ...
- linux初学者-SElinux篇
linux初学者-SElinux篇 SElinux是强制访问控制(MAC)安全系统,是linux历史上最杰出的新安全系统.对于linux安全模块来说,SElinux的功能是最全面的,测试也是最充分的, ...
- 【ironic】ironic介绍与原理
[ironic]ironic介绍与原理 零,配置文件 0.1 配置驱动 文件ironic.conf, ipmi硬件类型,默认值也是ipmi, pxe_ipmitool驱动也是默认值,配置驱动 [DEF ...
- 优化 Ubuntu
优化Ubuntu 1. 更换 apt 源 echo 'deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe mul ...
- 【Sublime】设置显示编码格式
Mac 上的 Sublime 显示编码格式,设置方法: 右下角显示的 UTF-8 就是当前的编码格式. 添加如下代码: { "font_size": 18, // Display ...