利用Python突破验证码限制
一、实验说明
本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点:
- Python基本知识
- PIL模块的使用
二、实验内容
安装 pillow(PIL)库:
$ sudo apt-get update
$ sudo apt-get install python-dev
$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk
$ sudo pip install pillow
下载实验用的文件:
$ wget http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip
$ unzip python_captcha.zip
$ cd python_captcha
这是我们实验使用的验证码 captcha.gif

提取文本图片
在工作目录下新建 crack.py 文件,进行编辑。
#-*- coding:utf8 -*-
from PIL import Image
im = Image.open("captcha.gif")
#(将图片转换为8位像素模式)
im = im.convert("P")
#打印颜色直方图
print im.histogram()
输出:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]
颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。
每个像素点可表现256种颜色,你会发现白点是最多(白色序号255的位置,也就是最后一位,可以看到,有625个白色像素)。红像素在序号200左右,我们可以通过排序,得到有用的颜色。
his = im.histogram()
values = {}
for i in range(256):
values[i] = his[i]
for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]:
print j,k
输出:
255 625
212 365
220 186
219 135
169 132
227 116
213 115
234 21
205 18
184 15
我们得到了图片中最多的10种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。
#-*- coding:utf8 -*-
from PIL import Image
im = Image.open("captcha.gif")
im = im.convert("P")
im2 = Image.new("P",im.size,255)
for x in range(im.size[1]):
for y in range(im.size[0]):
pix = im.getpixel((y,x))
if pix == 220 or pix == 227: # these are the numbers to get
im2.putpixel((y,x),0)
im2.show()
得到的结果:

提取单个字符图片
接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:
inletter = False
foundletter=False
start = 0
end = 0
letters = []
for y in range(im2.size[0]):
for x in range(im2.size[1]):
pix = im2.getpixel((y,x))
if pix != 255:
inletter = True
if foundletter == False and inletter == True:
foundletter = True
start = y
if foundletter == True and inletter == False:
foundletter = False
end = y
letters.append((start,end))
inletter=False
print letters
输出:
[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]
得到每个字符开始和结束的列序号。
import hashlib
import time
count = 0
for letter in letters:
m = hashlib.md5()
im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
m.update("%s%s"%(time.time(),count))
im3.save("./%s.gif"%(m.hexdigest()))
count += 1
(接上面的代码)
对图片进行切割,得到每个字符所在的那部分图片。
AI 与向量空间图像识别
在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:
- 不需要大量的训练迭代
- 不会训练过度
- 你可以随时加入/移除错误的数据查看效果
- 很容易理解和编写成代码
- 提供分级结果,你可以查看最接近的多个匹配
- 对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。
当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。
向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:
你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。
用 Python 类实现向量空间:
import math
class VectorCompare:
#计算矢量大小
def magnitude(self,concordance):
total = 0
for word,count in concordance.iteritems():
total += count ** 2
return math.sqrt(total)
#计算矢量之间的 cos 值
def relation(self,concordance1, concordance2):
relevance = 0
topvalue = 0
for word, count in concordance1.iteritems():
if concordance2.has_key(word):
topvalue += count * concordance2[word]
return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))
它会比较两个 python 字典类型并输出它们的相似度(用 0~1 的数字表示)
将之前的内容放在一起
还有取大量验证码提取单个字符图片作为训练集合的工作,但只要是有好好读上文的同学就一定知道这些工作要怎么做,在这里就略去了。可以直接使用提供的训练集合来进行下面的操作。
iconset目录下放的是我们的训练集。
最后追加的内容:
#将图片转换为矢量
def buildvector(im):
d1 = {}
count = 0
for i in im.getdata():
d1[count] = i
count += 1
return d1
v = VectorCompare()
iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
#加载训练集
imageset = []
for letter in iconset:
for img in os.listdir('./iconset/%s/'%(letter)):
temp = []
if img != "Thumbs.db" and img != ".DS_Store":
temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))
imageset.append({letter:temp})
count = 0
#对验证码图片进行切割
for letter in letters:
m = hashlib.md5()
im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
guess = []
#将切割得到的验证码小片段与每个训练片段进行比较
for image in imageset:
for x,y in image.iteritems():
if len(y) != 0:
guess.append( ( v.relation(y[0],buildvector(im3)),x) )
guess.sort(reverse=True)
print "",guess[0]
count += 1
得到结果
一切准备就绪,运行我们的代码试试:
python crack.py
输出
(0.96376811594202894, '7')
(0.96234028545977002, 's')
(0.9286884286888929, '9')
(0.98350370609844473, 't')
(0.96751165072506273, '9')
(0.96989711688772628, 'j')
#在学习Python的过程中,往往因为没有资料或者没人指导从而导致自己不想学下去了,因此我特意准备了个群 592539176 ,群里有大量的PDF书籍、教程都给大家免费使用!不管是学习到哪个阶段的小伙伴都可以获取到自己相对应的资料!
是正解,干得漂亮。
利用Python突破验证码限制的更多相关文章
- 关于利用python进行验证码识别的一些想法
转载:@小五义http://www.cnblogs.com/xiaowuyi 用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章.我大体看了一下,主要方法有几类: ...
- 利用Python进行简单的图像识别(验证码)
这是一个最简单的图像识别,将图片加载后直接利用Python的一个识别引擎进行识别 将图片中的数字通过 pytesseract.image_to_string(image)识别后将结果存入到本地的txt ...
- 利用 Python + Selenium 实现对页面的指定元素截图(可截长图元素)
对WebElement截图 WebDriver.Chrome自带的方法只能对当前窗口截屏,且不能指定特定元素.若是需要截取特定元素或是窗口超过了一屏,就只能另辟蹊径了. WebDriver.Phant ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
随机推荐
- IT兄弟连 HTML5教程 HTML5做到了与之前版本的兼容
为了保证HTML5能与之前的HTML版本达到最大的兼容,HTML5对一些元素标记的省略.boolean值的属性,以及引号的省略这几方面进行了兼顾,确保与之前版本的HTML达到兼容.在下面示例中,将本节 ...
- php获取本机ip
最近在写个东西时,需要获取本机的IP,但是由于php本身不带这样的功能,在网上找了好久也没有一个好办法,突然想到一个好办法,如下代码 <?=gethostbyname($_ENV['COMPUT ...
- Tomcat9+JDK 13报错Neither the JAVA_HOME nor the JRE_HOME environment variable is defined At least one of these environment variable is needed to run this program
Tomcat使用的是https://tomcat.apache.org/download-90.cgi Tomcat9 之前安装的JDK 13,有JAVA_HOME环境变量地址(C:\Program ...
- SPARQL入门(二)使用Java操作ARQ
在文章SPARQL入门(一)SPARQL简介与简单使用中,我们了解了RDF.SPARQL以及基于Java编写的SPARQL处理器ARQ.在本文中,笔者将会如何使用Java来操作ARQ. 注意到 ...
- windows下cocos2d-x工程结构讲解
这是我们新建好的工程,稍微解释一下我们开发windows的cocos应用所用到的几个文件夹的作用 Classes文件夹,存放游戏代码中的类的源码,当然我们放在别的地方也可以,只要配置好依赖关系就行了 ...
- js|jq获取兄弟节点,父节点,子节点
08.19自我总结 js|jq获取兄弟节点,父节点,子节点 一.js var parent = test.parentNode; // 父节点 var chils = test.childNodes; ...
- 简约清新日系你好五月通用PPT模板推荐
模版来源:http://ppt.dede58.com/peixunyanjiang/26488.html
- 【C#】学习笔记(4) 值类型和引用类型相关(Null相关)
Reference and Value Types Value Types(值类型): struct(结构体) 独立的实例或者是拷贝 值的改变不会影响其它拷贝 值就是它所代表的信息 没有引用,所以不可 ...
- gdisk分区及swap分区
gdisk分区及swap分区 gdisk分区,分区表是GPT,支持更大的分区,128G gdisk分区 一,添加硬盘 二,分区 1,安装gdisk [root@oldboy ~]# yum insta ...
- mssql 系统函数 字符串函数 space 功能简介
转自: http://www.maomao365.com/?p=4672 一.space 函数功能简介 space功能:返回指定数量的空格参数简介: 参数1: 指定数量,参数需为int类型 注意事项 ...