误差来自于偏差和方差(bias and variance)
 
对于随机变量 X,假设其期望和方差分别为 μ 和 σ2。随机采样 N 个随机变量构成样本,计算算术平均值 m,并不会直接得到 μ (除非采样无穷多个样本点)。
 
假设 m 和 s2 是样本均值和样本方差,由于样本都是随机抽取的,m 和 s2 也是随机的,那么如何构造的 μ  的 estimator?
如果采样很多次,每次都计算得到一个不同的 m,对这些变量 m 求期望,得到的就是对随机变量 X 的均值 μ 的估计:
,所以对随机变量 X 的均值的估计是无偏的
 
再对 m 求方差,根据定义,1/N 拿出来会套一个平方,而每次采样都是独立的,所以:

接下来,如何构造 σ的 estimator?=> 按照定义应该是对 s2 求期望:

可以发现这个估计是有偏的,修正:

回到机器学习的误差问题上,以 linear regression 为例:

同一个模型,怎么找很多个 f* 呢?——做很多次实验就好了。

为什么简单的模型比较不容易产生高方差的误差?
因为简单的模型受不同训练数据选取的影响不太大,而复杂模型的结果就会因此散布的很开(large variance)。
 
 
为什么简单模型的偏差误差可能比较大?
直观解释,简单模型的 function 的空间比较小,当定义模型之后就意味着最好的一个模型只能从这组 function set 中选出来,可能这个比较小的函数空间并没有包含到要找的 target,所以偏差会比较大。
 
复杂模型比较不容易出现高偏差的误差(蓝色线是红色线的平均,黑色线是 target):

underfitting:  Large bias, Small variance

overfitting:  Large variance, Small bias

怎么处理两类误差?
如果模型不能很好的拟合训练数据,就是 large bias  => 更复杂的模型;增加更多特征
 如果可以很好的拟合训练数据,但不能很好但拟合测试数据,就是 large variance  => 收集更多数据,数据增强;如果收集不到数据了,增加正则化惩罚项
 
 
怎么选择模型?
可靠的做法:cross validation
把训练集分成 training set 和 validation set 两部分,这样模型在 testing set 的 pubilc 上的表现就可以比较好的代表其在private集上的表现。(没有靠任何测试集信息决定模型)
 
更进一步的方法:先把训练集分成 N 个等份,分别作为 val 训练,取最优平均误差的模型,固定后再用全部的训练集训练一次

机器学习中的误差 Where does error come from?的更多相关文章

  1. 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

    前几天搜狗的一道笔试题,大意是在随机森林上增加一棵树,variance和bias如何变化呢? 参考知乎上的讨论:https://www.zhihu.com/question/27068705 另外可参 ...

  2. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  3. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

  4. 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  5. 机器学习中的K-means算法的python实现

    <机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行 ...

  6. 机器学习中的范数规则化-L0,L1和L2范式(转载)

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  7. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  8. 偏差(Bias)和方差(Variance)——机器学习中的模型选择zz

    模型性能的度量 在监督学习中,已知样本 ,要求拟合出一个模型(函数),其预测值与样本实际值的误差最小. 考虑到样本数据其实是采样,并不是真实值本身,假设真实模型(函数)是,则采样值,其中代表噪音,其均 ...

  9. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

随机推荐

  1. [网络协议]TCP粘包分析

    关于socket粘包,socket缓冲区设置的问题,记录一下: 一 .两个简单概念长连接与短连接: 长连接     Client方与Server方先建立通讯连接,连接建立后不断开, 然后再进行报文发送 ...

  2. Don’t Repeat Yourself

    The Don’t Repeat Yourself (DRY) principle states that duplication in logic should be eliminated via ...

  3. Linux命令学习-cd命令

    Linux中,cd命令的全称是change directory,即改变目录的意思,主要用于切换工作目录到指定目录. 假设当前处于wintest用户的主目录,路径为 /home/wintest ,存在文 ...

  4. Spring Boot + Elasticsearch 实现索引批量写入

    在使用Eleasticsearch进行索引维护的过程中,如果你的应用场景需要频繁的大批量的索引写入,再使用上篇中提到的维护方法的话显然效率是低下的,此时推荐使用bulkIndex来提升效率.批写入数据 ...

  5. printf打印参数的顺序问题

    C语言的printf函数处理的参数顺序是从右向左的,例如如下程序: #include <stdio.h>    int main()  {      int a = 1, b = 2, c ...

  6. 教你发布vue+.netCore项目到服务器

    最近一直在做项目,发布部署的事情都是同事或者老大做的,无奈什么事都要自己尝试经历后才能记住,所以发布的事情轮到我了,由于是第一次发布部署项目到一个新的服务器环境,难免会遇到各种各样的问题,总结下来,希 ...

  7. 【DFS练习】【最大的蛋糕块】-C++

    这道题目是一个基本的dfs模板(?)下面日常贴一波dfs的基本模板: void dfs()//参数用来表示状态 { if(到达终点状态) { ...//根据题意添加 return; } if(越界或者 ...

  8. micropython TPYBoard v201 简易的web服务器的实现过程

    转载请注明文章来源,更多教程可自助参考docs.tpyboard.com,QQ技术交流群:157816561,公众号:MicroPython玩家汇 前言 TPYBoard v201开发板上搭载了以太网 ...

  9. java反射构建对象和方法的反射调用

    Java反射技术应用广泛,其能够配置:类的全限定名,方法和参数,完成对象的初始化,设置是反射某些方法.可以增强java的可配置性. 1.1 通过反射构建对象(无参数): 例如我们使用 ReflectS ...

  10. 个人永久性免费-Excel催化剂功能第20波-Excel与Sqlserver零门槛交互-数据上传篇

    Excel作为众多数据存储的交换介质,在不同的系统内的数据很少可以很连贯地进行整合分析,一般的业务系统都会提供导出Excel作为标配功能供用户使用系统内生成的数据. 此时最大的问题是,Excel很维去 ...