1、首先需要搭建好hadoop+spark环境,并保证服务正常。本文以wordcount为例。

2、创建源文件,即输入源。hello.txt文件,内容如下:

tom jerry
henry jim
suse lusy

注:以空格为分隔符

3、然后执行如下命令:

  hadoop fs -mkdir -p /Hadoop/Input(在HDFS创建目录)

  hadoop fs -put hello.txt /Hadoop/Input(将hello.txt文件上传到HDFS)

  hadoop fs -ls /Hadoop/Input (查看上传的文件)

  hadoop fs -text /Hadoop/Input/hello.txt (查看文件内容)

4、用spark-shell先测试一下wordcount任务。

(1)启动spark-shell,当然需要在spark的bin目录下执行,但是这里我配置了环境变量。

(2)然后直接输入scala语句:

  val file=sc.textFile("hdfs://hacluster/Hadoop/Input/hello.txt")

  val rdd = file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)

  rdd.collect()

  rdd.foreach(println)

ok,测试通过。

5、Scala实现单词计数

 1 package com.example.spark
2
3 /**
4 * User: hadoop
5 * Date: 2017/8/17 0010
6 * Time: 10:20
7 */
8 import org.apache.spark.SparkConf
9 import org.apache.spark.SparkContext
10 import org.apache.spark.SparkContext._
11
12 /**
13 * 统计字符出现次数
14 */
15 object ScalaWordCount {
16 def main(args: Array[String]) {
17 if (args.length < 1) {
18 System.err.println("Usage: <file>")
19 System.exit(1)
20 }
21
22 val conf = new SparkConf()
23 val sc = new SparkContext(conf)
24 val line = sc.textFile(args(0))
25
26 line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect().foreach(println)
27
28 sc.stop()
29 }
30 }

6、用java实现wordcount

package com.example.spark;

import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public final class WordCount {
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception {
if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);
}
SparkConf conf = new SparkConf().setAppName("JavaWordCount");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> lines = sc.textFile(args[0],1);
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?, ?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
} sc.stop();
}
}

7、IDEA打包。

(1)File ---> Project Structure

点击ok,配置完成后,在菜单栏中选择Build->Build Artifacts...,然后使用Build等命令打包。打包完成后会在状态栏中显示“Compilation completed successfully...”的信息,去jar包输出路径下查看jar包,如下所示。

将这个wordcount.jar上传到集群的节点上,scp wordcount.jar root@10.57.22.244:/opt/   输入虚拟机root密码。

8、运行jar包。

本文以spark on yarn模式运行jar包。

执行命令运行javawordcount:spark-submit --master yarn-client --class com.example.spark.WordCount --executor-memory 1G --total-executor-cores 2 /opt/wordcount.jar hdfs://hacluster/aa/hello.txt

执行命令运行scalawordcount:spark-submit --master yarn-client --class com.example.spark.ScalaWordCount --executor-memory 1G --total-executor-cores 2 /opt/wordcount.jar hdfs://hacluster/aa/hello.txt

本文以java的wordcount为演示对象,如下图:

以上是直接以spark-submit方式提交任务,下面介绍一种以java web的方式提交。

9、以Java Web的方式提交任务到spark。

用spring boot搭建java web框架,实现代码如下:

  1)新建maven项目spark-submit

  2)pom.xml文件内容,这里要注意spark的依赖jar包要与scala的版本相对应,如spark-core_2.11,这后面2.11就是你安装的scala的版本

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.4.1.RELEASE</version>
</parent>
<groupId>wordcount</groupId>
<artifactId>spark-submit</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<start-class>com.example.spark.SparkSubmitApplication</start-class>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<java.version>1.8</java.version>
<commons.version>3.4</commons.version>
<org.apache.spark-version>2.1.0</org.apache.spark-version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>${commons.version}</version>
</dependency> <dependency>
<groupId>org.apache.tomcat.embed</groupId>
<artifactId>tomcat-embed-jasper</artifactId>
<scope>provided</scope>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<artifactId>spring-boot-starter-tomcat</artifactId>
<groupId>org.springframework.boot</groupId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty.websocket</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>apache-jsp</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-solr</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
</dependency> <dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.6.5</version>
</dependency> </dependencies>
<packaging>war</packaging> <repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>maven2</id>
<url>http://repo1.maven.org/maven2/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories> <build>
<plugins>
<plugin>
<artifactId>maven-war-plugin</artifactId>
<configuration>
<warSourceDirectory>src/main/webapp</warSourceDirectory>
</configuration>
</plugin> <plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty-maven-plugin</artifactId>
<configuration>
<systemProperties>
<systemProperty>
<name>spring.profiles.active</name>
<value>development</value>
</systemProperty>
<systemProperty>
<name>org.eclipse.jetty.server.Request.maxFormContentSize</name>
<!-- -1代表不作限制 -->
<value>600000</value>
</systemProperty>
</systemProperties>
<useTestClasspath>true</useTestClasspath>
<webAppConfig>
<contextPath>/</contextPath>
</webAppConfig>
<connectors>
<connector implementation="org.eclipse.jetty.server.nio.SelectChannelConnector">
<port>7080</port>
</connector>
</connectors>
</configuration>
</plugin>
</plugins> </build> </project>

(3)SubmitJobToSpark.java

package com.example.spark;

import org.apache.spark.deploy.SparkSubmit;

/**
* @author kevin
*
*/
public class SubmitJobToSpark { public static void submitJob() {
String[] args = new String[] { "--master", "yarn-client", "--name", "test java submit job to spark", "--class", "com.example.spark.WordCount", "/opt/wordcount.jar", "hdfs://hacluster/aa/hello.txt" };
SparkSubmit.main(args);
}
}

(4)SparkController.java

package com.example.spark.web.controller;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse; import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody; import com.example.spark.SubmitJobToSpark; @Controller
@RequestMapping("spark")
public class SparkController {
private Logger logger = LoggerFactory.getLogger(SparkController.class); @RequestMapping(value = "sparkSubmit", method = { RequestMethod.GET, RequestMethod.POST })
@ResponseBody
public String sparkSubmit(HttpServletRequest request, HttpServletResponse response) {
logger.info("start submit spark tast...");
SubmitJobToSpark.submitJob();
return "hello";
} }

5)将项目spark-submit打成war包部署到Master节点tomcat上,访问如下请求:

  http://10.57.22.244:9090/spark/sparkSubmit

  在tomcat的log中能看到计算的结果。

提交任务到spark(以wordcount为例)的更多相关文章

  1. 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]

    编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...

  2. 提交任务到Spark

    1.场景 在搭建好Hadoop+Spark环境后,现准备在此环境上提交简单的任务到Spark进行计算并输出结果.搭建过程:http://www.cnblogs.com/zengxiaoliang/p/ ...

  3. 提交任务到spark master -- 分布式计算系统spark学习(四)

    部署暂时先用默认配置,我们来看看如何提交计算程序到spark上面. 拿官方的Python的测试程序搞一下. qpzhang@qpzhangdeMac-mini:~/project/spark-1.3. ...

  4. 1.spark的wordcount解析

    一.Eclipse(scala IDE)开发local和cluster (一). 配置开发环境 要在本地安装好java和scala.  由于spark1.6需要scala 2.10.X版本的.推荐 2 ...

  5. [转] 用SBT编译Spark的WordCount程序

    问题导读: 1.什么是sbt? 2.sbt项目环境如何建立? 3.如何使用sbt编译打包scala? [sbt介绍 sbt是一个代码编译工具,是scala界的mvn,可以编译scala,java等,需 ...

  6. Spark 实现wordcount

    配置完spark之后,使用spark实现wordcount,这一部分完全参考<深入理解Spark:核心思想与源码分析> 依然使用hadoop wordcountTest的那几个txt文件 ...

  7. 用SBT编译Spark的WordCount程序

    问题导读: 1.什么是sbt? 2.sbt项目环境如何建立? 3.如何使用sbt编译打包scala? sbt介绍 sbt是一个代码编译工具,是scala界的mvn,可以编译scala,java等,需要 ...

  8. spark 例子wordcount topk

    spark 例子wordcount topk 例子描述: [单词计算wordcount ] [词频排序topk] 单词计算在代码方便很简单,基本大体就三个步骤 拆分字符串 以需要进行记数的单位为K,自 ...

  9. .Net for Spark 实现 WordCount 应用及调试入坑详解

    .Net for Spark 实现WordCount应用及调试入坑详解 1.    概述 iNeuOS云端操作系统现在具备物联网.视图业务建模.机器学习的功能,但是缺少一个计算平台产品.最近在调研使用 ...

随机推荐

  1. JavaScript数组方法大全(第二篇)

    数组方法大全(第二篇) 注意:如有错误欢迎指出,如有雷同纯属巧合,本博客参考书籍JavaScript权威指南,有兴趣的小伙伴可以去翻阅一下哦 forEach()方法 遍历数组,里面可以传递一个方法 v ...

  2. Go组件学习——database/sql数据库连接池你用对了吗

    1.案例 case1: maxOpenConns > 1 func fewConns() { db, _ := db.Open("mysql", "root:roo ...

  3. Oracle 12c Adoption Discussion — Summary

    Morning (@9:30) Oracle 12c Overview & Features for Developers Oracle Database In-Memory Deep Div ...

  4. Docker学习总结(六)--Dockerfile

    什么是 Dockerfile Dockerfile 是由一系列命令和参数构成的脚本,这些命令应用于基础镜像并最终创建一个新的镜像. 对于开发人员:可以为开发团队提供一个完全一致的开发环境; 对于测试人 ...

  5. CSS3 translate导致字体模糊

    今日客户反馈,发现 使用了 translate会导致字体模糊. .media-body-box{ @media all and (min-width: 992px){ position: absolu ...

  6. 解决ionic 启动页面图片没有显示及启动页出现黑白屏

    1.ionic 正确打包完app, 并且按照正常的步骤配置config.xml文件之后 ,启动页面还是不能正常的显示出来,而是黑了一下之后,就进入首页了 原因很有可能就是你没有装cordova-plu ...

  7. python学习——列表生成式,生成器和迭代器

    列表生成式 列表生成式,是python内置的非常简单却强大的可以用来创建list的生成式.它可以极大的简化语句. """列表生成式""" # ...

  8. Codeforces 976F

    题意略. 思路:为了保证每个点都有至少k条边覆盖,我们可以让二分图的左半边与源点s相连,连容量为indegree[i] - k的边(如果正着想不好想,我们可以想它的反面, 限制它反面的上限,从而保证我 ...

  9. Servlet 常用API学习(二)

    Servlet常用API学习 一.HTTP简介 WEB浏览器与WEB服务器之间的一问一答的交互过程必须遵循一定的规则,这个规则就是HTTP协议. HTTP是 hypertext transfer pr ...

  10. HDU4614Vases and Flowers 二分+线段树;

    参考:https://blog.csdn.net/ophunter_lcm/article/details/9879495   题意: 有n个花瓶,有两种操作,1.从a开始放b朵花,有花的花瓶跳过,2 ...