pat 1002 A+B for Polynomials (25 分)
1002 A+B for Polynomials (25 分)
This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N1 aN1 N2 aN2 ... NK aNK
where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤NK<⋯<N2<N1≤1000.
Output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 2 1.5 1 2.9 0 3.2
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
#define wzf ((1 + sqrt(5.0)) / 2.0)
#define INF 0x3f3f3f3f
#define eps 0.0000001
#define LL long long
using namespace std; const int MAXN = 1e3 + ;
int cnt = , book[MAXN] = {}, n, a;
double A[MAXN] = {0.0}, B[MAXN] = {0.0}, C[MAXN] = {0.0}, b; int main()
{
freopen("Date1.txt", "r", stdin);
scanf("%d", &n);
while (n --)
{
scanf("%d%lf", &a, &b);
A[a] = b;
}
scanf("%d", &n);
while (n --)
{
scanf("%d%lf", &a, &b);
B[a] += b;
} for (int i = ; i >= ; -- i)
{
if (A[i] != || B[i] != )
C[i] = A[i] + B[i];
if (C[i] != )
++ cnt;
}
printf("%d", cnt);
for (int i = ; i >= ; -- i)
{
if (C[i] != )
printf(" %d %.1f", i, C[i]);
}
printf("\n");
return ;
}
pat 1002 A+B for Polynomials (25 分)的更多相关文章
- PAT 1002 A+B for Polynomials (25分)
题目 This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: E ...
- PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642
PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642 题目描述: This time, you are suppos ...
- PAT 1002. A+B for Polynomials (25) 简单模拟
1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue T ...
- PAT Advanced 1002 A+B for Polynomials (25 分)(隐藏条件,多项式的系数不能为0)
This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...
- 【PAT甲级】1002 A+B for Polynomials (25 分)
题意:给出两个多项式,计算两个多项式的和,并以指数从大到小输出多项式的指数个数,指数和系数. AAAAAccepted code: #include<bits/stdc++.h> usin ...
- PAT 1002. A+B for Polynomials (25)
This time, you are supposed to find A+B where A and B are two polynomials. Input Each input file con ...
- PAT Advanced 1009 Product of Polynomials (25 分)(vector删除元素用的是erase)
This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: Each ...
- 1002 A+B for Polynomials (25分)
This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...
- 1002 A+B for Polynomials (25分) 格式错误
算法笔记上能踩的坑都踩了. #include<iostream> using namespace std; float a[1001];//至少1000个位置 int main(){ in ...
- PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值
题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...
随机推荐
- 机器学习:weka中Evaluation类源码解析及输出AUC及交叉验证介绍
在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标.下面是调用weka类,输出AOC的源码: try { // 1.读入数据集 Instances data = new Inst ...
- PMP 项目管理第六版- 组织治理与项目治理之间的关系
组织治理: 1.组织治理通过制定政策和流程,用结构化方式指明工作方向并进行控制,以便实现战略和运营目标. 2,组织治理通常由董事会执行,以确保对相关方的最终责任得以落实,并保持公平和透明. 项目治理: ...
- 在Hadoop上用Python实现WordCount
一.简单说明 本例中我们用Python写一个简单的运行在Hadoop上的MapReduce程序,即WordCount(读取文本文件并统计单词的词频).这里我们将要输入的单词文本input.txt和Py ...
- Beanutils.copyProperties( )使用详情总结
Beanutils.copyProperties( ) 一.简介: BeanUtils提供对Java反射和自省API的包装.其主要目的是利用反射机制对JavaBean的属性进行处理.我们知道,一个 ...
- python中list切片详解
语法:[start:stop:step] step代表切片步长:切片区间为[start,stop),包含start但不包含stop 1.step > 0,从左往右切片 2.step <0, ...
- C++ 大作业资料总结
一般 C++ 大作业都是用 Qt 来写,Qt 本身带了很多例子,详见:https://doc.qt.io/qt-5/qtexamples.html# 如果你想偷懒的话,直接拿来改就好,或者去 Gith ...
- 小白学微信小程序
奔着实用性的目的-测试孩子的认字量,开发了一个微信小程序-测字大王.上下班路上看书看了一个星期,代码前后共写一个星期.现在小程序已经对外开放,share下我的开发过程吧. 一 工具准备 首先先过一篇 ...
- iOS开发高级分享 - Unread的下拉式选单
解构革命的演变 背景 2013年中期,RSS世界遭受了沉重打击.谷歌宣布,他们(*的*)RSS订阅服务,[谷歌阅读器],是被关闭了.有了它,数以百万计的声音突然惊恐地大叫,并突然保持沉默. 使用量下降 ...
- Leetcode Tags(4)Stack & Queue
一.232. Implement Queue using Stacks private Stack<Integer> stack; /** Initialize your data str ...
- django-模板之include标签(十五)
就是将一些常用的html代码分离出来,使其可以重复利用,减少代码量 index.html <!DOCTYPE html> <html lang="en"> ...