利用logistic回归进行分类的主要思想:根据现有数据对分类边界建立回归公式,并以此进行分类。

logistic优缺点:

优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。 .
适用数据类型:数值型和标称型数据。

sigmoid函数:

梯度上升法:

梯度:

该公式将一直被迭代执行,直至达到某个停止条件为止,比如迭代次数达到某个指定值或算
法达到某个可以允许的误差范围。

随机梯度上升法:

梯度上升算法在每次更新回归系数时都需要遍历整个数据集, 该方法在处理100个左右的数
据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度就太高了。一种
改进方法是一次仅用一个样本点来更新回归系数,该方法称为随机梯度上升算法。由于可以在新
样本到来时对分类器进行增量式更新,因而随机梯度上升算法是一个在线学习算法。与 “ 在线学
习”相对应,一次处理所有数据被称作是“批处理” 。

梯度下降法:

你最经常听到的应该是梯度下降算法,它与这里的梯度上升算法是一样的,只是公式中的
加法需要变成减法。因此,对应的公式可以写成:

梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。

logistic预测疝气病预测病马的死亡率代码:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import random # 加载数据集
def loadDataSet():
dataMat = []
labelMat = []
fr = open('./testSet.txt')
for line in fr.readlines():
lineData = line.strip().split()
dataMat.append([1.0, float(lineData[0]), float(lineData[1])])
labelMat.append(int(lineData[2]))
return dataMat, labelMat # sigmoid 函数
def sigmoid(inX):
return 1.0 / (1 + np.exp(-inX)) # 梯度上升
def gradAscent(dataMatIn, classLabels, maxCycles):
dataMatrix = np.mat(dataMatIn)
labelsMatrix = np.mat(classLabels).transpose() # 转置,将行向量转置为列向量
m, n = np.shape(dataMatrix) alpha = 0.001
W = np.ones((n, 1))
for i in range(maxCycles):
h = sigmoid(dataMatrix * W) # (100, 1)
error = labelsMatrix - h # (100, 1)
W = W + alpha * dataMatrix.transpose() * error # (3, 100) * (100, 1) return W #改进版随机梯度上升
def stocGradAscent1(dataMatrixIn, classLabels, numIter=150):
dataMatrix = np.array(dataMatrixIn)
m,n = np.shape(dataMatrix)
weights = np.ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4.0/(1.0+j+i)+0.01 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return np.mat(weights.reshape(n, 1)) def plotBestFit(weights, dataMat, labelMat):
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if labelMat[i] == 1:
xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2]) fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
ax.scatter(xcord2, ycord2, s = 30, c = 'green')
x = np.arange(-4.0, 4.0, 0.1)
y = ((np.array((-weights[0] - weights[1] * x) / weights[2]))[0]).transpose()
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() # 预测
def classifyVector(inX, weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0 # 对训练集进行训练,并且对测试集进行测试
def colicTest():
trainFile = open('horseColicTraining.txt')
testFile = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in trainFile.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21])) # 开始训练
weights = stocGradAscent1(trainingSet, trainingLabels, 400)
errorCount = 0.0
numTestVec = 0.0
for line in testFile.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr), weights)) != int(currLine[21]):
errorCount += 1.0
errorRate = errorCount / float(numTestVec)
print("the error rate is:%f" % errorRate)
return errorRate # 多次测试求平均值
def multiTest():
testTimes = 10
errorRateSum = 0.0
for i in range(testTimes):
errorRateSum += colicTest()
print("the average error rate is:%f" % (errorRateSum / float(testTimes))) multiTest()

机器学习实战之logistic回归分类的更多相关文章

  1. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

  2. 05机器学习实战之Logistic 回归

    Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...

  3. 《机器学习实战》Logistic回归

    注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成 1.Logistic回归理论 http://www.cnblogs.com/wjy-lulu/p/7759515.h ...

  4. 05机器学习实战之Logistic 回归scikit-learn实现

    https://blog.csdn.net/zengxiantao1994/article/details/72787849似然函数 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概 ...

  5. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  6. 机器学习(4)之Logistic回归

    机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...

  7. 第七篇:Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  8. 机器学习实战-logistic回归分类

    基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...

  9. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

随机推荐

  1. MongoDB(四):数据类型、插入文档、查询文档

    1. 数据类型 MongoDB支持许多数据类型. 字符串 - 这是用于存储数据的最常用的数据类型.MongoDB中的字符串必须为UTF-8. 整型 - 此类型用于存储数值. 整数可以是32位或64位, ...

  2. How to: Change the Format Used for the FullAddress and FullName Properties 如何:更改用于FullAddress和FullName属性的格式

    There are FullAddress and FullName properties in the Address and Person business classes that are su ...

  3. diango url的命名和反向解析

    url的命名和反向解析 静态路由 url(r'^login/', views.login,name='login'), 反向解析ht 模板 {% url 'login' %} --> '/app ...

  4. CSS画一个三角形,CSS绘制空心三角形,CSS实现箭头

     壹 ❀ 引 这两天因为项目工作较少,闲下来去看了GitHub上关于面试题日更收录的文章,毕竟明年有新的打算.在CSS收录中有一题是 用css创建一个三角形,并简述原理 .当然对于我来说画一个三角形是 ...

  5. Spring Cloud Alibaba 实战(十一) - Spring Cloud认证授权

    欢迎关注全是干货的技术公众号:JavaEdge 本文主要内容: 如何实现用户认证与授权? 实现的三种方案,全部是通过画图的方式讲解.以及三种方案的对比 最后根据方案改造Gateway和扩展Feign ...

  6. B站弹幕爬取 / jieba分词 - 全站第一的视频弹幕都在说什么?

    前言 本次爬取的视频av号为75993929(11月21的b站榜首),讲的是关于动漫革命机,这是一部超魔幻现实主义动漫(滑稽),有兴趣的可以亲身去感受一下这部魔幻大作. 准备工作 B站弹幕的爬取的接口 ...

  7. Mybatis基本类型参数非空判断(异常:There is no getter for property...)

    先看一小段代码 <select id="queryByPhone" parameterType="java.lang.String" resultType ...

  8. Python 周刊第 418 期

    新闻 PyCon US 2020 开始接受财务赞助! https://pycon.blogspot.com/2019/10/financial-aid-launches-for-pycon-us-20 ...

  9. ETCD:gRPC代理

    原文地址:gRPC proxy gRPC代理是在gRPC层(L7)运行的无状态etcd反向代理.代理旨在减少核心etcd群集上的总处理负载.对于水平可伸缩性,它合并了监视和租约API请求. 为了保护集 ...

  10. C#爬虫例子

    公司需要抓取新闻,每次手动复制粘贴新闻,太麻烦了,业务人员就提出了要求,需要程序实现自动抓取新闻,因此就写了这个简单的爬虫程序. Html Agility Pack库 这是一个.NET下的HTML解析 ...