Python—Celery 框架使用
一、Celery 核心模块
1. Brokers
brokers 中文意思为中间人,在这里就是指任务队列本身,接收生产者发来的消息即Task,将任务存入队列。任务的消费者是Worker,Brokers 就是生产者和消费者存放/拿取产品的地方(队列)。Celery 扮演生产者和消费者的角色。
常见的 brokers 有 rabbitmq、redis、Zookeeper 等。推荐用Redis或RabbitMQ实现队列服务。
2. Workers
就是 Celery 中的工作者,执行任务的单元,类似与生产/消费模型中的消费者。它实时监控消息队列,如果有任务就从队列中取出任务并执行它。
3. Backend / Result Stores
用于存储任务的执行结果。队列中的任务运行完后的结果或者状态需要被任务发送者知道,那么就需要一个地方储存这些结果,就是 Result Stores 了。
常见的 backend 有 redis、Memcached 甚至常用的数据库都可以。
4. Tasks
就是想在队列中进行的任务,有异步任务和定时任务。一般由用户、触发器或其他操作将任务入队,然后交由 workers 进行处理。
5. Beat
定时任务调度器,根据配置定时将任务发送给Brokers。
二、Celery 基本使用
1.创建一个celery application 用来定义你的任务列表,创建一个任务文件就叫tasks.py吧。
from celery import Celery # 配置好celery的backend和broker
app = Celery('task1', backend='redis://127.0.0.1:6379/0', broker='redis://127.0.0.1:6379/0') #普通函数装饰为 celery task
@app.task
def add(x, y):
return x + y
如此而来,我们只是定义好了任务函数func函数和worker(celery对象)。worker相当于工作者。
2.启动Celery Worker来开始监听并执行任务。broker 我们有了,backend 我们有了,task 我们也有了,现在就该运行 worker 进行工作了,在 tasks.py 所在目录下运行:
[root@localhost ~]# celery -A tasks worker --loglevel=info # 启动方法1
[root@localhost ~]# celery -A tasks worker --l debug # 启动方法2
现在 tasks 这个任务集合的 worker 在进行工作(当然此时broker中还没有任务,worker此时相当于待命状态),如果队列中已经有任务了,就会立即执行。
3.调用任务:要给Worker发送任务,需要调用 delay() 方法。
import time
from tasks import add # 不要直接add(6, 6),这里需要用 celery 提供的接口 delay 进行调用
result = add.delay(6, 6)
while not result.ready():
time.sleep(1)
print('task done: {0}'.format(result.get()))
三、Celery 进阶使用
1.celery_config.py:配置文件
from __future__ import absolute_import, unicode_literals
#从python的绝对路径导入而不是当前的脚本 #在python2和python3做兼容支持的 BROKER_URL = 'redis://127.0.0.1:6379/0'
# 指定结果的接受地址
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
2.tasks.py
from __future__ import absolute_import, unicode_literals
#从python的绝对路径导入而不是当前的脚本 #在python2和python3做兼容支持的
from celery import Celery # 配置好celery的backend和broker, task1:app的名字。broker
app = Celery('task1', #
broker='redis://127.0.0.1:6379/0', # 消息队列:连rabbitmq或redis
backend='redis://127.0.0.1:6379/0') # 存储结果:redis或mongo或其他数据库 app.config_from_object("celery_config")
app.conf.update( # 给app设置参数
result_expires=3600, # 保存时间为1小时
) #普通函数装饰为 celery task
@app.task
def add(x, y):
return x + y if __name__ == '__main__':
app.start()
3.启动worker
[root@localhost ~]# celery -A tasks worker --loglevel=info
4.test.py
# -*- coding:utf-8 -*-
import time
from tasks import add # 不要直接add(4, 4),这里需要用 celery 提供的接口 delay 进行调用
result = add.delay(6, 6)
print(result.id)
while not result.ready():
time.sleep(1)
print('task done: {0}'.format(result.get()))
四、Celery 定时任务
参考:https://www.cnblogs.com/forward-wang/p/5970806.html
参考:https://www.cnblogs.com/shizhengwen/p/6911043.html
参考:https://blog.51cto.com/steed/2292346?source=dra
参考:https://blog.csdn.net/qq_37049050/article/details/82260151
参考:https://www.cnblogs.com/zhangbingsheng/p/10384517.html
参考:https://www.cnblogs.com/cwp-bg/p/8759638.html
Python—Celery 框架使用的更多相关文章
- Python开源框架
info:更多Django信息url:https://www.oschina.net/p/djangodetail: Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC) ...
- Awesome Python,Python的框架集合
Awesome Python A curated list of awesome Python frameworks, libraries and software. Inspired by awes ...
- Celery框架简单实例
Python 中可以使用Celery框架 Celery框架是提供异步任务处理的框架,有两种用法,一种:应用程式发布任务消息,后台Worker监听执行,好处在于不影响应用程序继续执行.第二种,设置定时执 ...
- Python 定时任务框架 APScheduler 详解
APScheduler 最近想写个任务调度程序,于是研究了下 Python 中的任务调度工具,比较有名的是:Celery,RQ,APScheduler. Celery:非常强大的分布式任务调度框架 R ...
- Django+Celery框架自动化定时任务开发
本章介绍使用DjCelery即Django+Celery框架开发定时任务功能,在Autotestplat平台上实现单一接口自动化测试脚本.业务场景接口自动化测试脚本.App自动化测试脚本.Web自动化 ...
- 教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神
本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http://www.xiaohuar.com/,让你体验爬取校花的成就感. Scr ...
- 【python】15个最受欢迎的Python开源框架
Django: Python Web应用开发框架 Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响.Django是走大而全的方向,它最出名的是其全自动化的管理后台: ...
- python celery + redis
redis http://debugo.com/python-redis celery http://docs.jinkan.org/docs/celery/getting-started/intro ...
- Python定时任务框架APScheduler 3.0.3 Cron示例
APScheduler是基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务.基 ...
随机推荐
- sql注入问题回顾
(以下语法均为在python中使用mysql语句,部分代码省略,使用python中的pymsql模块获取游标对象即可直接执行sql语句) sql注入:在传入参数的时候做出改变,使得插入数据这条sql语 ...
- 个人收藏--未整理—C# 上传下载文件
Winform下载文件 /// <summary> /// 下载文件 /// </summary> /// <param name="URL"> ...
- Spring源码分析之AOP
1.AOP简介 AOP即面向切面编程(Aspect Oriented Programming),通过预编译方式及运行期动态代理实现程序功能的统一维护的一种技术.使用aop对业务逻辑的各个部分进行隔离, ...
- Win10 SQLServer 未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序
环境:Win10+SQLServer2014 场景:在SQLServer导入Excel时,选择Excel2007格式,提示:未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供 ...
- Java标识符(Identifier)(关键字和保留字)
Java标识符(Identifier) 1. 只能由英文字母(A~Z)或(a~z).下划线(_).美元符号($)和数字(0~9)组成,且开头不能为数字. 2. 区分大小写! 3. 无长度限制! _3_ ...
- rsync通过服务同步、Linux系统日志、screen工具 使用介绍
第8周5月15日任务 课程内容: 10.32/10.33 rsync通过服务同步10.34 linux系统日志10.35 screen工具 扩展1. Linux日志文件总管logrotate http ...
- shell脚本介绍、shell脚本结构和执行、date命令用法、shell脚本中的变量
7月11日任务 20.1 shell脚本介绍20.2 shell脚本结构和执行20.3 date命令用法20.4 shell脚本中的变量 20.1 shell脚本介绍 1.shell脚本语言是linu ...
- list列表操作
li = [1,2,3,4,'4','456'] print(li.index('4')) # print(li.index('45')) l_a = ['1234567','7890'] l_b = ...
- fsockopen以Socket方式模拟HTTP下载文件
fsockopen 的功能很强大,比如前面模拟 HTTP 访问,模拟 POST/GET 请求,什么的,这里再举一个例子,那就是下载东西.比如下载 http://www.nowamagic.net//l ...
- requests库核心API源码分析
requests库是python爬虫使用频率最高的库,在网络请求中发挥着重要的作用,这边文章浅析requests的API源码. 该库文件结构如图: 提供的核心接口在__init__文件中,如下: fr ...