Problem

Description

幼儿园里有 \(n\) 个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。

我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

Input Format

文件的第一行只有两个整数 \(n,m\),保证有 \(2\le n\le 300,1\le m\le \frac{n(n-1)}{2}\)。其中 \(n\) 代表总人数,m代表好朋友的对数。文件第二行有 \(n\) 个整数,第 \(i\) 个整数代表第 \(i\) 个小朋友的意愿,当它为 \(1\) 时表示同意睡觉,当它为 \(0\) 时表示反对睡觉。接下来文件还有 \(m\) 行,每行有两个整数 \(i\) ,\(j\) 。表示 \(i\) ,\(j\) 是一对好朋友,我们保证任何两对 \(i\) ,\(j\) 不会重复。

Output Format

只需要输出一个整数,即可能的最小冲突数。

Sample

Input 1

3 3
1 0 0
1 2
1 3
3 2

Output 1

1

Range

\(2\le n\le 300, 1\le m\le n(n - 1) / 2\)

Algorithm

网络流

Mentality

先建立一个源点 \(S\) 和汇点 \(T\) ,然后将所有同意睡觉的人和 \(S\) 连边,否则和 \(T\) 连边,容量设为 \(1\) ,再将每对朋友之间连上一条容量为 \(1\) 的边。

若割去一条边的代价为 \(1\) ,不难发现题目所求其实际上就是使 \(S\) 与 \(T\) 之间不连通的最小代价,因为若 \(S\) 和 \(T\) 仍联通,说明它们之间仍有朋友的冲突没有被解决或是被计算。

若断去一个人与其朋友之间的边,就代表他没有违背自己的意愿,而若他断掉与自己所连的源、汇点之间的边,则代表他向朋友妥协了。

跟据最大流等于最小割,直接在建出的图上跑最大流即可。

Code

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
#define LL long long
#define go(x, i, v) for (int i = hd[x], v = to[i]; i; v = to[i = nx[i]])
#define inline __inline__ __attribute__((always_inline))
inline LL read() {
LL x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') w = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
}
const int Max_n = 305, Max_m = Max_n * Max_n << 1, inf = 1e9;
int n, m, S, T, ans;
int cntr = 1, hd[Max_n], cur[Max_n], nx[Max_m], to[Max_m], w[Max_m];
int dep[Max_n], fnow[Max_n], flow[Max_n];
void addr(int u, int v, int W) {
cntr++;
nx[cntr] = hd[u], to[cntr] = v, w[cntr] = W;
hd[u] = cntr;
}
queue<int> q;
bool build() {
for (int i = 1; i <= n + 2; i++) cur[i] = hd[i], dep[i] = -1, fnow[i] = 0;
q.push(S), dep[S] = 0, fnow[S] = 1e9;
while (!q.empty()) {
int x = q.front();
q.pop();
go(x, i, v) if (dep[v] == -1 && w[i]) dep[v] = dep[x] + 1, q.push(v);
}
return dep[T] != -1;
}
void dfs(int x) {
if (x == T) {
flow[x] = fnow[x], ans += flow[x];
return;
}
for (int i = cur[x], v = to[i]; i; v = to[i = nx[i]])
if (dep[v] == dep[x] + 1 && w[i]) {
cur[x] = i, fnow[v] = min(fnow[x], w[i]), dfs(v);
w[i] -= flow[v], fnow[x] -= flow[v];
w[i ^ 1] += flow[v], flow[x] += flow[v];
flow[v] = 0;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("2057.in", "r", stdin);
freopen("2057.out", "w", stdout);
#endif
n = read(), m = read(), S = n + 1, T = n + 2;
for (int i = 1; i <= n; i++)
if (!read())
addr(S, i, 1), addr(i, S, 0);
else
addr(i, T, 1), addr(T, i, 0);
int u, v;
while (m--) {
u = read(), v = read();
addr(u, v, 1), addr(v, u, 0);
addr(u, v, 0), addr(v, u, 1);
}
while (build()) dfs(S);
cout << ans;
}

【SHOI 2007】善意的投票的更多相关文章

  1. [SHOI 2007] 善意的投票

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1934 [算法] 首先 , 选择睡觉的人和不选择睡觉的人构成两个集合 这启发我们用最小 ...

  2. [SHTSC 2007] 善意的投票

    我就是来复习Dinic算法的,仅10天不写,我已经退化成写一遍+调试需要接近一个小时了,当然其中不乏在网上乱逛的时间… 赞成从S源点连一条单向边,反对向T汇点连一条单向边,朋友关系连双向边. 但是总感 ...

  3. 「SHOI2007」「Codevs2341」 善意的投票(最小割

    2341 善意的投票 2007年省队选拔赛上海市队选拔赛 时间限制: 5 s 空间限制: 128000 KB 题目等级 : 大师 Master   题目描述 Description 幼儿园里有n个小朋 ...

  4. C++之路进阶——bzoj1934(善意的投票)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  5. BZOJ-1934 Vote 善意的投票 最大流+建图

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1551 Solved: 951 [Submit][S ...

  6. bzoj1934: [Shoi2007]Vote 善意的投票

    最大流..建图方式都是玄学啊.. //Dinic是O(n2m)的. #include<cstdio> #include<cstring> #include<cctype& ...

  7. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. 1934: [Shoi2007]Vote 善意的投票

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1174  Solved: 723[Submit][S ...

  9. 【BZOJ1934】善意的投票(网络流)

    [BZOJ1934]善意的投票(网络流) 题面 Description 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己 ...

  10. BZOJ_1934_[Shoi2007]Vote 善意的投票

    BZOJ_1934_[Shoi2007]Vote 善意的投票 Description 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然 ...

随机推荐

  1. jquery ajax提交数据给后端

    大家好,今天铁柱兄给大家带一段jquery ajax提交数据给后端的教学. 初学javaweb的同学前端提交数据基本上都是用form表单提交,这玩意儿反正我是觉得不太好玩.而JavaScript aj ...

  2. CSS中如果实现元素浮动,看这篇文章就足够了

    浮动基本介绍 在标准文档流中元素分为2种,块级元素和行内元素,如果想让一些元素既要有块级元素的特点也同时保留行内元素特点,只能让这些元素脱离标准文档流即可. 浮动可以让元素脱离标准文档流,可以实现让多 ...

  3. golang实现rabbitmq消息队列失败尝试

    在工作中发现,有些时候消息因为某些原因在消费一次后,如果消息失败,这时候不ack,消息就回一直重回队列首部,造成消息拥堵. 如是有了如下思路: 消息进入队列前,header默认有参数 retry_nu ...

  4. 深入浅出Spring(二)

    IoC概念 控制反转(Inversion of Control)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题. 它还有一个名字叫做依赖注入(Dependency Injection).Io ...

  5. 【RN - 基础】之FlexBox弹性布局

    前言 弹性盒模型(The Flexible Box Module),又叫FlexBox,意为“弹性布局”,旨在通过弹性的方式来对齐和分布容器中内容的空间,使其能适应不同的屏幕,为盒装模型提供最大的灵活 ...

  6. OSI-传输层

    OSI-传输层 端口号(2字节 SYN(1bit) ACK(1bit) 会话多路复用(为什么一个IP地址可以做很多事情?) 源端口地址可以不同 五元组(世界上没有相同的2个五元组) 源IP地址-目的I ...

  7. 华为云ModelArts2.0来袭

    [摘要] modelarts自发布以来,不断地更新增加新的功能来为AI工程师们带来新的服务,在这次的全联接大会上EI服务产品部总经理贾永利宣布--华为云AI重装升级,并重磅发布一站式AI开发管理平台M ...

  8. 转:linux 安装 Elasticsearch5.6.x 详细步骤以及问题解决方案

    在网上有很多那种ES步骤和问题的解决 方案的,不过没有一个详细的整合,和问题的梳理:我就想着闲暇之余,来记录一下自己安装的过程以及碰到的问题和心得:有什么不对的和问题希望及时拍砖. 第一步:环境 li ...

  9. sbt assembly a fat jar for spark-submit cluster model

    在用spark-submit提交作业时,用sbt package打包好的jar程序,可以很好的运行在client模式,当在cluster模式, 一直报错:Exception in thread &qu ...

  10. [ch05-01] 正规方程法解决多变量线性回归问题

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 5.1 正规方程解法 英文名是 Normal Equat ...