BZOJ2733/LG3324 「HNOI2014」永无乡 权值线段树合并
问题描述
题解
对于每个结点建立一棵权值线段树。
查询操作就去查询第 \(k\) 大,合并操作就合并两颗权值线段树。
并查集维护连通性。
同时 STO hkk,zcr,zzk
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
}
template <typename Tp>
void fr(Tp &x){
char ch=1;
while(ch!='Q'&&ch!='B') ch=getchar();
if(ch=='Q') x=1;
else x=2;
}
const int maxn=100003;
int n,m,T;
int rk[maxn];
int pre[maxn];
int rt[maxn],L[maxn*22],R[maxn*22],cnt;
int val[maxn*22],fa[maxn];
void pushup(int x){
val[x]=val[L[x]]+val[R[x]];
}
int insert(int x,int l,int r,int p,int v){
if(!x) x=++cnt;
if(l==r){
val[x]+=v;
return x;
}
int mid=(l+r)>>1;
if(p<=mid) L[x]=insert(L[x],l,mid,p,v);
else R[x]=insert(R[x],mid+1,r,p,v);
pushup(x);
return x;
}
int merge(int p,int q,int l,int r){
if(!p||!q) return p+q;
if(l==r){
val[q]+=val[p];return q;
}
int mid=(l+r)>>1;
L[q]=merge(L[p],L[q],l,mid);
R[q]=merge(R[p],R[q],mid+1,r);
pushup(q);
return q;
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int query(int x,int l,int r,int k){
if(!x&&k) return -1;
if(r-l+1<k) return -1;
if(l==r) return l;
int mid=(l+r)>>1;
if(!L[x]&&!R[x]&&k) return -1;
if(L[x]&&val[L[x]]>=k) return query(L[x],l,mid,k);
else return query(R[x],mid+1,r,k-val[L[x]]);
}
void cz1(){
int x,k;read(x);read(k);
int xx=find(x);
int ppp=query(rt[xx],1,100000,k);
printf("%d\n",pre[ppp]);
}
void cz2(){
int x,y;read(x);read(y);
int xx=find(x),yy=find(y);
if(xx==yy) return;
fa[xx]=yy;
merge(rt[xx],rt[yy],1,100000);
}
int main(){
read(n);read(m);
for(int i=1;i<=n;i++) read(rk[i]),pre[rk[i]]=i;
for(int i=1;i<=n;i++) rt[i]=++cnt;
for(int i=1;i<=n;i++){
fa[i]=i;
insert(rt[i],1,100000,rk[i],1);
}
// #define debug1
#ifdef debug1
for(int i=1;i<=n;i++)
printf("%d %d\n",query(rt[i],1,100000,1),query(rt[i],1,100000,2));
#endif
for(int i=1,x,y;i<=m;i++){
read(x);read(y);
int xx=find(x),yy=find(y);
if(xx==yy) continue;
fa[xx]=yy;
merge(rt[xx],rt[yy],1,100000);
}
int T,op;read(T);
while(T--){
fr(op);
if(op==1) cz1();
else cz2();
}
return 0;
}
BZOJ2733/LG3324 「HNOI2014」永无乡 权值线段树合并的更多相关文章
- BZOJ 2733 [HNOI2012]永无乡 (权值线段树启发式合并+并查集)
题意: n<=1e5的图里,在线连边.查询某连通块第k大 思路: 练习线段树合并的好题,因为依然记得上一次启发式合并trie的时候内存爆炸的恐怖,所以这次还是用了动态开点.回收 听说启发式合并s ...
- B20J_2733_[HNOI2012]永无乡_权值线段树合并
B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...
- luogu3224 永无乡(动态开点,权值线段树合并)
luogu3224 永无乡(动态开点,权值线段树合并) 永无乡包含 n 座岛,编号从 1 到 n ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 n 座岛排名,名次用 1 到 n 来表示.某些 ...
- LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- 「HNOI2012」永无乡
传送门 Luogu 解题思路 很容易想到平衡树,然后还可以顺便维护一下连通性,但是如何合并两棵平衡树? 我们采用一种类似于启发式合并的思想,将根节点siz较小的那颗平衡树暴力的合并到另一颗上去. 那么 ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- 【BZOJ2733】【HNOI2012】永无乡 - 线段树合并
题意: Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通 ...
- 【BZOJ2733】永无乡[HNOI2012](splay启发式合并or线段树合并)
题目大意:给你一些点,修改是在在两个点之间连一条无向边,查询时求某个点能走到的点中重要度第k大的点.题目中给定的是每个节点的排名,所以实际上是求第k小:题目求的是编号,不是重要度的排名.我一开始差点被 ...
随机推荐
- Less(5)
考查点:双查询报错注入 1.先判断注入类型 (1)首先看到要求,要求传一个ID参数,并且要求是数字型的:?id=1 (2)再输入?id=1' 显示报错,报错多了一个单引号 (3)再输入?id=1'' ...
- 【AtCoder】AtCoder Grand Contest 039 解题报告
点此进入比赛 \(A\):Connection and Disconnection(点此看题面) 大致题意: 给你一个字符串,将它重复\(k\)次.进行尽量少的操作,每次修改一个位置上的字符,使得不存 ...
- vscode源码分析【六】服务实例化和单例的实现
第一篇: vscode源码分析[一]从源码运行vscode 第二篇:vscode源码分析[二]程序的启动逻辑,第一个窗口是如何创建的 第三篇:vscode源码分析[三]程序的启动逻辑,性能问题的追踪 ...
- angularjs 一篇文章看懂自定义指令directive
壹 ❀ 引 在angularjs开发中,指令的使用是无处无在的,我们习惯使用指令来拓展HTML:那么如何理解指令呢,你可以把它理解成在DOM元素上运行的函数,它可以帮助我们拓展DOM元素的功能.比如 ...
- MongoDB创建集合和删除集合05-14学习笔记
MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写,是一个基于分布式文件存储的开源数据库系统.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关 ...
- httpclient超时时间设置及代理设置
超时时间 设置HttpClient的超时时间,非常有必要性,因为httpclient 默认超时时间很长,自己可以测试一下是多久,设置超时时间否则会影响自己系统的业务逻辑,例如阻塞系统,影响系统的吞吐量 ...
- 给 K8s API “做减法”:阿里巴巴云原生应用管理的挑战和实践
作者 | 孙健波(天元) 阿里巴巴技术专家本文整理自 11 月 21 日社群分享,每月 2 场高质量分享,点击加入社群. 早在 2011 年,阿里巴巴内部便开始了应用容器化,当时最开始是基于 LXC ...
- iota: Golang 中优雅的常量
阅读约 11 分钟 注:该文作者是 Katrina Owen,原文地址是 iota: Elegant Constants in Golang 有些概念有名字,并且有时候我们关注这些名字,甚至(特别)是 ...
- java基础(11):接口、多态
1. 接口 1.1 接口概念 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”. 接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于接口的子类)来完成. ...
- 【面试突击】-RabbitMQ常见面试题(三)
1.什么是RabbitMQ?为什么使用RabbitMQ? 答:RabbitMQ是一款开源的,Erlang编写的,基于AMQP协议的,消息中间件: 可以用它来:解耦.异步.削峰. 2.RabbitMQ有 ...