论文链接 https://link.springer.com/article/10.1007/s11704-017-7119-0

这篇论文试图解决的问题是在cache 环节之前,prefetch-cache 进来的可能无关的 fingerprint 造成的cache pollution问题,即可能把没有用的 fingerprint 换入 cache,造成 cache 污染的问题。

这篇论文的贡献:提出了一种新的针对 prefetch 进来的 fingerprint 替换策略,并且提出了一种 adaptive 的方法,针对不同的 fingerprint 有与其对应的替换策略,提高了 deduplication throughput 和 deduplication ratio. 本文并不是试图提出一种新的对 fingerprint 如何进行 prefetch 的方法,而是针对不同种类的,已经做过了 prefetch 操作的 fingerprint,针对他们不同的种类,做不同的replacement。同时,这种 replacement policy 并不和 LRU 等 policy 相冲突,反而可以和之前的 LRU policy 相结合。

具体方法框架如图所示:

细节:针对一个被 prefetch 的 fingerprint 分为了两大类,一类是 accurate 的fingerprint,一类是 inaccurate 的fingerprint。accurate 的 fingerprint 是说那些prefetch 进 cache 之后,hit 了超过不止一次的 fingerprint,反之则是 inaccurate。对于 inaccurate fingerprint 又可以划分为不同的种类,有 Unused prefetched fingerprint,used only once fingerprint,mixed pattern fingerprint,针对这三种不同的 fingerprint,提出了不同的替换策略,分别是 PreCache-UNU, PreCache-UOO,PreCache-MIX。不同的替换策略都有不同的假设,自然也有不同的操作。

PreCache-UNU 预测所有新被 prefetch 的 fingerprint 都不会被用到(distant future)所以应该直接要被 LRU 算法替换出去(evicted quickly)针对这些 fingerprint,采用的方法是把他们直接移动到 LRU queue 的尾端,这样当 LRU 进行替换的时候,他们就是第一批被替换出去的 fingerprint。如果这些被认为是 UNU 的fingerprint 被使用了(即这个时候我们错误的划分了 fingerprint)那么根据 LRU 的规则他们也会被放到 head 端,这就是没有直接把这些 fingerprint 剔除的原因。

PreCache-UOO 预测所有的新的被 prefetch 的 fingerprint 只会被使用一次,然后就不会被使用。所以,他把这些 fingerprint 放在 LRU 队列的 head 端,并且当这些 fingerprint 被 hit 的时候,并不会重新调整他们的位置。(因为预测他们只会被使用一次,如果调整了他们的位置,就和传统的并无差别)。针对一些被 prefetch 进 cache,并且较长时间没有被使用,到快被替换出去的时候才被hit了一次,然后又不会被 hit 的fingerprint 而言,这种策略能够很快的将他们替换出去(因为并没有调整他们的位置)。

PreCache-MIX 给所有的 fingerprint 一个统一的策略,放在 LRU 队列的 tail 端,并且即使命中也不会调整位置。

同时,还存在一个问题,针对一个 fingerprint,如何把它进行分类,如何去选择一个适合他的替换策略。提出了一种动态适应的选择器,可以根据预测的历史结果,动态选择合适的策略去替换不同的 fingerprint。

选择器的功能:针对一个 fingerprint,去预测这个 fingerprint 是属于 accurate 还是 inaccurate 的,如果是 inaccurate 的,那么是 UNU 的,还是 UOO 的,还是 MIX 的。

选择器维护了几个计数器:

  • total 记录了所有被 prefetch 的 fingerprint 个数。
  • use_over_once,记录了cache中所有被 hit 超过一次的 fingerprint 的个数
  • unused,记录了被 prefetch 的,但是没有被使用的 fingerprint 的个数。
  • Use_only_once 记录了只被使用过一次的 fingerprint 的个数。
  • hit_evice_buf 记录了一个main cache miss 在 evicted 中被 hit 的个数。

选择器主要的 idea:根据历史信息来预测。
每个种类都有一个对应的判别阈值和公式去决定这个 prefetch 的 fingerprint 是否是对应的种类。

效果评估:
在 BLC 和 SiLO 这两个系统的基础上加入了 PreCache 算法,使用的数据是 Kernel,MacOS 和 Homes 三种。BLC 系统代表的是 exact deduplication 系统,SiLO 系统代表的是 near exact deduplication 系统,针对两个不同的系统,采取的评价指标也不一样。BLC 中,因为 fingerprint 无法完全被存入cache,所以使用 look up index 的次数去评价系统,而 SiLO 因为 采用的是 sample feature 的方式,所以使用 deduplication ratio 去评价系统。

论文阅读 Prefetch-aware fingerprint cache management for data deduplication systems的更多相关文章

  1. 论文阅读《ActiveStereoNet:End-to-End Self-Supervised Learning for Active Stereo Systems》

    本文出自谷歌与普林斯顿大学研究人员之手并发表于计算机视觉顶会ECCV2018.本文首次提出了应用于主动双目立体视觉的深度学习解决方案,并引入了一种新的重构误差,采用自监督的方法来解决缺少ground ...

  2. 论文阅读:FlexGate: High-performance Heterogeneous Gateway in Data Centers

    摘要: 大型数据中心通过边界上的网关对每个传入的数据包执行一系列的网络功能,例如,ACL被部署来阻止不合格的流量,而速率限制被用于防止供应商过度使用带宽,但是由于流量的规模巨大,给网关的设计和部署带来 ...

  3. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  4. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  5. [论文阅读笔记] Are Meta-Paths Necessary, Revisiting Heterogeneous Graph Embeddings

    [论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文 ...

  6. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  7. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

  8. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  9. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

随机推荐

  1. Map(映射)

    散列表介绍: 数组和链表都可以是有序的(即存储顺序与取出顺序一致),但这样是有代价的,需要遍历才可以寻找某一特定元素: 而还有另外的一些存储结构:不在意元素的顺序,能够快速的查找元素的数据 其中就有一 ...

  2. 快学Scala 第十九课 (trait的abstract override使用)

    trait的abstract override使用: 当我看到abstract override介绍的时候也是一脸懵逼,因为快学scala,只介绍了因为TimestampLogger中调用的super ...

  3. spring boot参数验证

    必须要知道 简述 JSR303/JSR-349,hibernate validation,spring validation 之间的关系 JSR303 是一项标准,JSR-349 是其的升级版本,添加 ...

  4. 疑似网络抖动引起的RAC单节点宕机

  5. linux netlink通信机制简介

    一.什么是Netlink通信机制  Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...

  6. # Ubuntu16.04安装nvidia驱动+CUDA+cuDNN

    Ubuntu16.04安装nvidia驱动+CUDA+cuDNN 准备工作 1.查看GPU是否支持CUDA lspci | grep -i nvidia 2.查看Linux版本 uname -m &a ...

  7. 在chrome浏览器安装各种前端,后台插件

    如果想要在chrome安装插件,首先得先有应用chrome的商城,但是默认情况下是没有应用商店: 默认情况下下面这个界面是空白的,没有任何东西,第一步就先安装[谷歌访问助手] 安装步骤 第一步: 下载 ...

  8. 点云之OpenMesh:error C1083:无法打开包括文件:“OpenMesh/Core/IO/MeshIO.hh”:No such file or directory

    1.这是一个错误引发的惨案:错误提示如下: 在进行点云程序调试时,出现错误:[error C1083:无法打开包括文件:“OpenMesh/Core/IO/MeshIO.hh”:No such fil ...

  9. cocos2d-x 3.2,Label,Action,Listener,Menu Item等简单用法

    转载自:http://blog.csdn.net/pleasecallmewhy/article/details/34931021 创建菜单(Menu Item) // 创建菜单 auto menuI ...

  10. Flannel的VXLAN模式工作原理

    跨主机通信的一个解决方案是Flannel,由CoreOS推出,最早支持的是UDP模式,但是因为性能太差被淘汰了, 过时的UDP模式 相比两台宿主机直接通信,多出了flanneld的处理过程,发出IP包 ...