[Machine learning] Logistic regression
1. Variable definitions
m : training examples' count
\(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature
\begin{pmatrix}
1 & x^{(1)}_1 & ... & x^{(1)}_n \\
1 & x^{(2)}_1 & ... & x^{(2)}_n \\
... & ... & ... & ... \\
1 & x^{(n)}_1 & ... & x^{(n)}_n \\
\end{pmatrix}\]
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
... \\
\theta_n \\
\end{pmatrix}\]
2. Hypothesis
\begin{pmatrix}
x_0 \\
x_1 \\
... \\
x_n \\
\end{pmatrix}
\]
\]
sigmoid function
\]
g = 1 ./ (1 + e .^ (-z));
3. Cost function
\]
vectorization edition of Octave
J = -(1 / m) * sum(y' * log(sigmoid(X * theta)) + (1 - y)' * log(1 - sigmoid(X * theta)));
4. Goal
find \(\theta\) to minimize \(J(\theta)\), \(\theta\) is a vector here
4.1 Gradient descent
\]
repeat until convergence{
\(\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j\)
}
vectorization
\(S\)
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)}-y^{(n)})
\end{pmatrix}
\begin{pmatrix}
x^{(1)}_0 & x^{(1)}_1 & ... & x^{(1)}_3 \\
x^{(2)}_0 & x^{(2)}_1 & ... & x^{(2)}_3 \\
... & ... & ... & ... \\
x^{(n)}_0 & x^{(n)}_1 & ... & x^{(n)}_3 \\
\end{pmatrix}
\]
\begin{pmatrix}
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_0 &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_1 &
... &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_n
\end{pmatrix}
\]
\]
\]
\(X\theta\) is nx1, \(y\) is nx1
\(\frac{1}{1+e^{(-X\theta)}} - y\) is nx1
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)})-y^{(n)}
\end{pmatrix}
\]
\]
5. Regularized logistic regression
to avoid overfitting or underfitting
Cost function
\]
Gradient descent
\]
\]
[Machine learning] Logistic regression的更多相关文章
- 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...
- 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...
- Machine Learning—Linear Regression
Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.
- 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)
最小二乘线性回归,感知机,逻辑回归的比较: 最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...
- [Machine Learning] logistic函数和softmax函数
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...
- 机器学习---线性回归(Machine Learning Linear Regression)
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...
- [Machine Learning] Linear regression
1. Variable definitions m : training examples' count \(y\) : \(X\) : design matrix. each row of \(X\ ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
随机推荐
- P2746 [USACO5.3]校园网Network of Schools tarjan 缩点
题意 给出一个有向图,A任务:求最少需要从几个点送入信息,使得信息可以通过有向图走遍每一个点B任务:求最少需要加入几条边,使得有向图是一个强联通分量 思路 任务A,比较好想,可以通过tarjan缩点, ...
- E-MAZE_2019牛客暑期多校训练营(第二场)
题意 给出n行m列的迷宫0可走1不可走,有两个操作,操作1变换点(a,b)的值,操作2查询(1,a)到(n,b)的方案数 题解 设\(F[i][j]\)为第i-1行到达第i行第j列的方案数,若点\(( ...
- 2018宁夏邀请赛 Continuous Intervals(单调栈 线段树
https://vjudge.net/problem/Gym-102222L 题意:给你n个数的序列,让判断有几个区间满足排完序后相邻两数差都不大于1. 题解:对于一个区间 [L,R],记最大值为 m ...
- c++ uconcontext.h实现协程
目录 c++ uconcontext.h实现协程 什么是协程? ucontext.h库 库的使用示例 代码地址 c++ uconcontext.h实现协程 什么是协程? 协程是一种程序组件,是由子例程 ...
- Codeforces Round #481 (Div. 3) B. File Name
题目地址:http://codeforces.com/contest/978/problem/B 题解:一串文件名里不能出现连续的xxx,询问进行几次操作后,文件名才不会出现xxx. 方法:只要遍历一 ...
- yzoj P2350 逃离洞穴 题解
题意 跑两边spfa的水题,注意判断有人才取最大值 代码 #include<bits/stdc++.h> using namespace std; inline int read(){ i ...
- 什么是Werkzeug
上一节介绍了什么是WSGI,这一节我们看看Werkzeug 按照官方的说法,Werkzeug(源自德语,工具的意思)是一个WSGI工具库,它开始于一个适用于WSGI的多样化的工具集,后来发展成了现在非 ...
- 【Offer】[62] 【圆圈中最后剩下的数字】
题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 牛客网刷题地址 ...
- 【Offer】[35] 【复杂链表的复制】
题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的he ...
- 1张影射过往的图片,如何勾起往事的回忆,.CORE其实可以是这样的吗?
看到某人写了一个流程分析貌似可以披云见日,形似之余好像回忆可以相得益彰 然后我刚刚不小心发布了,当然要准备100字的说明,这个字应该怎么打好呢,不知不觉打了好多字,我好难啊 首先这是正常情况看不到的图 ...