『字符合并 区间dp 状压dp』
<更新提示>
<第一次更新>
<正文>
字符合并
Description
有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字符和分数由这 k 个字符确定。你需要求出你能获得的最大分数。
Input Format
第一行两个整数n,k。接下来一行长度为n的01串,表示初始串。
接下来2^k行,每行一个字符ci和一个整数wi,ci表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应获得的分数。
1<=n<=300,0<=ci<=1,wi>=1,k<=8
Output Format
输出一个整数表示答案
Sample Input
3 2
101
1 10
1 10
0 20
1 30
Sample Output
40
解析
首先,我们很容易想到区间\(dp\):\(f[l][r]\)代表合并区间\([l,r]\)的最大分数。但是这样记录状态好像不太好,因为区间合并后还会留下一些字符,这些字符还会产生一些价值。
如果考虑可以合并就合并的话,我们发现一个区间的剩余字符数不会超过\(k\)个,\(k\leq 8\)。
那就考虑状态压缩:\(f[l][r][S]\)代表合并区间\([l,r]\),得到字符集\(S\)的最大价值。然后我们就考虑用区间\(dp\)的框架来执行转移。首先,我们一定要枚举一个断点,然后合并两个区间。但是现在我们状态中还有一个\(S\),难道再枚举两个\(S_1,S_2\)来合并吗?
这样时间复杂度肯定是承受不了的。有一种更好的转移方式就是每次只考虑断点右边的区间合并成原区间状态\(S\)中的最后一个字符,这样同样可以做到更新不存在遗漏。
那么我们根据这样的方式转移即可:\(1.\) 执行通过子区间合并的转移。 \(2.\) 当区间长度可以合并时,执行计算合并贡献的转移。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N = 302 , K = 8;
const long long INF = 0x3f3f3f3f;
int n,k,a[N],c[1<<K];
long long w[1<<K],f[N][N][1<<K];
inline void input(void)
{
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
scanf("%1d",&a[i]);
for (int i=0;i<1<<k;i++)
scanf("%d%lld",&c[i],&w[i]);
}
inline void DynamicProgram(void)
{
memset( f , 0xcf , sizeof f );
for (int i=1;i<=n;i++) f[i][i][a[i]] = 0;
for (int len=2;len<=n;len++)
for (int l=1,r;(r=l+len-1)<=n;l++)
{
int L = (len-1) % (k-1);
if ( L == 0 ) L = k-1;
for (int mid=r-1;mid>=l;mid-=k-1)
for (int S=0;S<1<<L;S++)
f[l][r][S<<1] = max( f[l][r][S<<1] , f[l][mid][S] + f[mid+1][r][0] ),
f[l][r][S<<1|1] = max( f[l][r][S<<1|1] , f[l][mid][S] + f[mid+1][r][1] );
if ( L == k-1 )
{
long long g[2] = {-INF,-INF};
for (int S=0;S<1<<k;S++)
g[c[S]] = max( g[c[S]] , f[l][r][S] + w[S] );
f[l][r][0] = g[0] , f[l][r][1] = g[1];
}
}
}
int main(void)
{
input();
DynamicProgram();
long long ans = -INF;
for (int S=0;S<1<<k;S++)
ans = max( ans , f[1][n][S] );
printf("%lld\n",ans);
return 0;
}
<后记>
『字符合并 区间dp 状压dp』的更多相关文章
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- 『数 变进制状压dp』
数 Description 给定正整数n,m,问有多少个正整数满足: (1) 不含前导0: (2) 是m的倍数: (3) 可以通过重排列各个数位得到n. \(n\leq10^{20},m\leq100 ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)
题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...
随机推荐
- python基础(5):格式化输出、基本运算符、编码问题
1. 格式化输出 现在有以下需求,让⽤户输入name, age, job,hobby 然后输出如下所⽰: ------------ info of Alex Li ----------- Name : ...
- 17个常见的Python运行时错误
对于刚入门的Pythoner在学习过程中运行代码是或多或少会遇到一些错误,刚开始可能看起来比较费劲.随着代码量的积累,熟能生巧当遇到一些运行时错误时能够很快的定位问题原题.下面整理了常见的17个错误, ...
- length()返回当前字符串的字符个数
package seday01;/** * int length() * 返回当前字符串的字符个数 * @author xingsir * */public class LengthDemo { pu ...
- SpringMVC入门 -- 参数绑定
一.REST与RESTful 1.简介 (1)REST(Representational State Transfer):表现层状态转移,一种软件架构风格,不是标准.REST描述的是在网络中clien ...
- 顺F速运,你被爱加M坑了
- 加密情况 首先我们到顺F官网,下载顺F速运APP,当然,是Android版,毕竟穷. 接下来,得看看怎么用,当然顺便用Wireshark抓包,点那个显眼的立即登录按钮. 使用手机号登录,随便敲敲, ...
- 区块链社交APP协议分析:Qbao
- Qbao是什么 - Qbao报文情况 本节我们开始使用Qbao软件,并抓取其报文进行分析. 对APP进行协议分析抓包的一般过程是: 1.打开抓包APP进行抓包: 2.打开APP开始使用: 3.对每 ...
- Web安全攻防笔记-SQL注入
information_schema(MySQL5.0版本之后,MySQL数据库默认存放一个information_schema数据库) information_schema的三个表: SCHEMAT ...
- Spring Boot2.1.7启动zipkin-server报错:Error creating bean with name 'armeriaServer' defined in class path
修改项目,更新组件版本时,引入了最新版本2.12.9的zipkin-server和zipkin-autoconfigure-ui时,服务启动报错: org.springframework.beans. ...
- 4. 海思Hi3519A MPP从入门到精通(四 视频输出)
VO(Video Output,视频输出)模块主动从内存相应位置读取视频和图形数据,并通过相应的显示设备输出视频和图形. 1. 基本概念 3519A芯片支持的显示/回写设备.视频层和图形层见下表. 注 ...
- Centos7安装vsftp服务
我们需要向centos操作系统的服务器上上传文件或者下载文件,这时候,ftp有必要安装下, 我们选择主流的vsftp: 第一步:安装vsftp yum install -y vsftpd 第二步:设置 ...