Random Forest And Extra Trees
随机森林
我们对使用决策树随机取样的集成学习有个形象的名字–随机森林。
scikit-learn 中封装的随机森林,在决策树的节点划分上,在随机的特征子集上寻找最优划分特征。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=666)
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=500, random_state=666, oob_score=True)
rf_clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimat 大专栏 Random Forest And Extra Treesors=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
rf_clf.oob_score_
0.892
自定义决策树某些参数
rf_clf2 = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16
, random_state=666, oob_score=True)
rf_clf2.fit(X, y)
rf_clf2.oob_score_
0.906
Extra-Trees
在决策树的节点划分上,使用随机的特征和随机的阈值。
随机性更加极端。
提供了额外的随机性,一直过拟合,但增大了 bias 。
更快的训练速度。
from sklearn.ensemble import ExtraTreesClassifier
et_clf = ExtraTreesClassifier(n_estimators=500, bootstrap=True
, random_state=666, oob_score=True)
et_clf.fit(X, y)
ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
et_clf.oob_score_
0.892
集成学习解决回归问题
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
Random Forest And Extra Trees的更多相关文章
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Plotting trees from Random Forest models with ggraph
Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 3. 集成学习(Ensemble Learning)随机森林(Random Forest)
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...
- 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)
之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...
- Random Forest Classification of Mushrooms
There is a plethora of classification algorithms available to people who have a bit of coding experi ...
随机推荐
- iOS 中UITableView的深理解
例如下图:首先分析一下需求:1.根据模型的不同状态显示不同高度的cell,和cell的UI界面. 2.点击cell的取消按钮时,对应的cell首先要把取消按钮隐藏掉,然后改变cell的高度. 根据需求 ...
- 你必须知道的基本位运算技巧(状压DP、搜索优化都会用到)
一. 位操作基础 基本的位操作符有与.或.异或.取反.左移.右移这6种,它们的运算规则如下所示: 符号 描述 运算规则 & 与 两个位都为1时,结果才为1 | 或 两个位都为0时,结果才为0 ...
- MySQL 基础知识梳理
MySQL 的安装方式有多种,但是对于不同场景,会有最适合该场景的 MySQL 安装方式,下面就介绍一下 MySQL 常见的安装方法,包括 rpm 安装,yum 安装,通用二进制安装以及源码编译安装, ...
- 第04项目:淘淘商城(SpringMVC+Spring+Mybatis)【第八天】(solr服务器搭建、搜索功能实现)
https://pan.baidu.com/s/1bptYGAb#list/path=%2F&parentPath=%2Fsharelink389619878-229862621083040 ...
- matplotlib学习——设置线条颜色及形状
在图形表示中,不同的画布或画布中不同的函数,我们常常要用不同的形状或颜色来区分开,这里小编向大家介绍这些参数的表示方法: 一.控制颜色 b--blue c--cyan(青色) ...
- HTMLTestRunner 报告框架使用
HTMLTestRunner 报告框架使用 file_path = base_path + '/Report/report.html' with open(file_path, 'wb') as f: ...
- python语法基础-异常操作-长期维护
############### python-异常的操作 ############### # 异常:python解释器遇到一个错误,会停止程序的执行,并且提示错误信息,这就是异常, # 抛出异 ...
- Outlook邮件的右键菜单中添加自定义按钮
customUI代码如下: <customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui"> ...
- sqlserver命令创建数据库和表 demo
由于sqlserver用起来很不爽 可以尝试用vscode+sqlserver插件玩玩 友情提示 在vscode中新建一个.sql 并配置好与sqlserver的连接 利用sql会有提示创建表 数据库 ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...