随机森林

我们对使用决策树随机取样的集成学习有个形象的名字–随机森林。

scikit-learn 中封装的随机森林,在决策树的节点划分上,在随机的特征子集上寻找最优划分特征。

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=666)
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()

from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=500, random_state=666, oob_score=True)
rf_clf.fit(X, y)

RandomForestClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimat 大专栏  Random Forest And Extra Treesors=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)

rf_clf.oob_score_

0.892

自定义决策树某些参数

rf_clf2 = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16
, random_state=666, oob_score=True)
rf_clf2.fit(X, y)
rf_clf2.oob_score_

0.906

Extra-Trees

在决策树的节点划分上,使用随机的特征和随机的阈值。

随机性更加极端。

提供了额外的随机性,一直过拟合,但增大了 bias 。

更快的训练速度。

from sklearn.ensemble import ExtraTreesClassifier

et_clf = ExtraTreesClassifier(n_estimators=500, bootstrap=True
, random_state=666, oob_score=True)
et_clf.fit(X, y)

ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)

et_clf.oob_score_

0.892

集成学习解决回归问题

from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor

Random Forest And Extra Trees的更多相关文章

  1. sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  2. Plotting trees from Random Forest models with ggraph

    Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees ...

  3. 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm

    一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...

  4. 3. 集成学习(Ensemble Learning)随机森林(Random Forest)

    1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...

  5. 随机森林random forest及python实现

    引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...

  6. [Machine Learning & Algorithm] 随机森林(Random Forest)

    1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...

  7. paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting

    本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...

  8. 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)

    之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...

  9. Random Forest Classification of Mushrooms

    There is a plethora of classification algorithms available to people who have a bit of coding experi ...

随机推荐

  1. Java连载72-String类详解、多个构造方法

    一.String类 1.String类是不可以变类,也就是说String对象声明后 2.java.lang.String:是字符串类型 (1)字符串一旦创建不可再改变,“abc”字符串对象一旦创建,不 ...

  2. 吴裕雄--天生自然 PYTHON3开发学习:OS 文件/目录方法

    import os, sys # 假定 /tmp/foo.txt 文件存在,并有读写权限 ret = os.access("/tmp/foo.txt", os.F_OK) prin ...

  3. debian8修改kde桌面语言

    apt-get install kde-l10n-zhcn, language里面改中文 亲测可用 来源:http://tieba.baidu.com/p/2489771177

  4. 函数动态传参,命名空间,gloabal,nonlocal关键字

    一.函数参数->动态传参(形参的第三种) 动态参数分为两种: 1)动态接收位置参数 普通的位置传参: def func(quality_food,junk_food): print('我要吃', ...

  5. Web 自动化

    自动化:由机器设备代替人为自动完成指定目标的过程 自动化测试:由程序代替人为去验证程序功能的过程 为什么要进行自动化测试? 解决-回归测试 压力测试 兼容性测试 提高测试效率,保证产品质量 什么阶段开 ...

  6. 共克时艰,停工不停学 Serverless 在线课堂免费开课

    二月份,Serverless 团队联合腾讯云大学与云+社区免费推出 Serverless 在线直播课程,课程涵盖 Serverless 架构解密.技术解析以及不同应用场景下的最佳实战指导,让你从 0 ...

  7. Qt QImag图像保存、格式转换

    图像保存bool QImage::save(const QString &fileName, const char *format = Q_NULLPTR, int quality = -1) ...

  8. NEON优化之《简介》

    NDK支持NEON环境配置:https://blog.csdn.net/app_12062011/article/details/50462351 一个很典型的例子:http://hilbert-sp ...

  9. 探索真实事物的虚拟再现——微软亚洲研究院SIGGRAPH Asia 2014精彩入选论文赏析

    Asia 2014精彩入选论文赏析" title="探索真实事物的虚拟再现--微软亚洲研究院SIGGRAPH Asia 2014精彩入选论文赏析"> SIGGRAP ...

  10. mysql 子查询 合并查询

    4.1带In 关键字的子查询 一个查询语句的条件可能落在另一个SELECT 语句的查询结果中. SELECT * FROM t_book WHERE booktypeId IN (SELECT id ...