Random Forest And Extra Trees
随机森林
我们对使用决策树随机取样的集成学习有个形象的名字–随机森林。
scikit-learn 中封装的随机森林,在决策树的节点划分上,在随机的特征子集上寻找最优划分特征。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=666)
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()

from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=500, random_state=666, oob_score=True)
rf_clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimat 大专栏 Random Forest And Extra Treesors=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
rf_clf.oob_score_
0.892
自定义决策树某些参数
rf_clf2 = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16
, random_state=666, oob_score=True)
rf_clf2.fit(X, y)
rf_clf2.oob_score_
0.906
Extra-Trees
在决策树的节点划分上,使用随机的特征和随机的阈值。
随机性更加极端。
提供了额外的随机性,一直过拟合,但增大了 bias 。
更快的训练速度。
from sklearn.ensemble import ExtraTreesClassifier
et_clf = ExtraTreesClassifier(n_estimators=500, bootstrap=True
, random_state=666, oob_score=True)
et_clf.fit(X, y)
ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
et_clf.oob_score_
0.892
集成学习解决回归问题
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
Random Forest And Extra Trees的更多相关文章
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Plotting trees from Random Forest models with ggraph
Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 3. 集成学习(Ensemble Learning)随机森林(Random Forest)
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...
- 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)
之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...
- Random Forest Classification of Mushrooms
There is a plethora of classification algorithms available to people who have a bit of coding experi ...
随机推荐
- 推荐:MongoDB学习资料
http://www.mongodb.org/display/DOCS/Production+Deployments Official MongoDBProject Website Getting S ...
- AI精灵
由于使用的CRM系统是Aras Innovator系统,所有的任务分配必须登入系统查看,故做出以下自动接受任务信息的小工具. 1.登入,实现自动记录上次登入的信息,支持多账户 登入成功后会以图标运 ...
- Opencv笔记(十三)——图像的梯度
目标 认识图像梯度.边界 学习函数cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 原理 图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导.Op ...
- tcp和udp的socket形式
Sockets编程有三种: (1).流套接字(SOCK_STREAM): (2).数据包套接字(SOCK_DGRAM): (3).原始套接字(SOCK_RAW): TCP是流套接字 UCP是数据包套接 ...
- layui表格自动对齐
正常情况table应该是这样展示的 但是却展示成了这样 格子没对齐,找了半天原因发现是在table.render中的cols参数多了一个"," 不细心一点真看不出来 正常结构应是 ...
- springboot学习笔记:12.解决springboot打成可执行jar在linux上启动慢的问题
有时候,当你把你的springboot项目打成可执行的jar,放在linux上启动时,发现启动超级慢: 这往往是因为springboot内置tomcat启动时实例化SecureRandom对象随机数策 ...
- PostgreSQL与mysql的比较
特性 MySQL PostgreSQL 实例 通过执行 MySQL 命令(mysqld)启动实例.一个实例可以管理一个或多个数据库.一台服务器可以运行多个 mysqld 实例.一个实例管理器可以监视 ...
- python项目中对mysql数据库进行配置,并进行连接测试
在settings.py中配置mysql数据库进行相关配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME ...
- Java IO: 字符流的Buffered和Filter
作者: Jakob Jenkov 译者: 李璟(jlee381344197@gmail.com) 本章节将简要介绍缓冲与过滤相关的reader和writer,主要涉及BufferedReader.B ...
- ISBN|方正|超星|The national academies press|OECD|RSC|Springer Link|Knovel|Encyclopedia Britannica
图书使用图书分类号ISBN作为图书的ID 大英百科全书(Encyclopedia Britannica)可用于找寻关键词或关键词相关信息,便于构建准确的检索式: Knovel:可使用物理化学性质查找相 ...