Clairaut 定理 证明
(Clairaut 定理)设 $E$ 是 $\mathbf{R}^n$ 的开子集合,并设 $f:\mathbf{E}\to \mathbf{R}^{m}$ 是 $E$ 上的二次连续可微函数.那么对于一切$x_0\in E$ 和 $1\leq i,j\leq n$,
\begin{align*}
\frac{\partial }{\partial x_j}\frac{\partial f}{\partial
x_i}(x_0)= \frac{\partial }{\partial x_i}\frac{\partial
f}{\partial x_j}(x_0)
\end{align*}
证明:这个定理的本质是二重极限的顺序问题,在题设条件下,交换极限的顺序对结果无影响.我们依照定义来证明.不妨设 $j<i$.设 $x_0$ 在 $\mathbf{R}^n$ 中的坐标
为$(a_1,a_2,\cdots,a_n)$.则
\begin{equation}
\label{eq:8.00}
\frac{\partial f}{\partial x_i}(x_0)=\lim_{\Delta x_{i}\to 0;\Delta
x_{i}\neq 0}\frac{f(a_1,\cdots,a_i+\Delta
x_{i},\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_{i}}.
\end{equation}
易得
\begin{align*}
&\frac{\partial }{\partial x_j}\frac{\partial f}{\partial
x_i}(x_0)\\&=\lim_{\Delta x_j\to 0;\Delta x_j\neq
0}\lim_{\Delta x_i\to 0;\Delta x_i\neq
0}\frac{\frac{f(a_1,\cdots,a_j+\Delta x_j,\cdots,a_i+\Delta
x_i,\cdots,a_n)-f(a_1,\cdots,a_j+\Delta
x_j,\cdots,a_i,\cdots,a_n)}{\Delta x_i}-\frac{f(a_1,\cdots,a_j,\cdots,a_i+\Delta
x_i,\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_i}}{\Delta x_j}.
\end{align*}
且易得
\begin{align*}
&\frac{\partial }{\partial x_i}\frac{\partial f}{\partial
x_j}(x_0)\\&=\lim_{\Delta x_i\to 0;\Delta x_i\neq
0}\lim_{\Delta x_j\to 0;\Delta x_j\neq
0}\frac{\frac{f(a_1,\cdots,a_j+\Delta x_j,\cdots,a_i+\Delta
x_i,\cdots,a_n)-f(a_1,\cdots,a_j+\Delta
x_j,\cdots,a_i,\cdots,a_n)}{\Delta x_i}-\frac{f(a_1,\cdots,a_j,\cdots,a_i+\Delta
x_i,\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_i}}{\Delta x_j}.
\end{align*}
结合微分中值定理,再加上二阶偏导数连续,因此极限可以交换顺序,而结果值不变.得证.
Clairaut 定理 证明的更多相关文章
- Wilson定理证明
Wilson定理证明 就是那个\((p-1)! \equiv -1 \pmod{p}\),\(p\)是一个素数. Lemma A \(\mathbb{Z}_p\)可以去掉一个零元变成一个群. 即\(\ ...
- tensorflow deepmath:基于深度学习的自动化数学定理证明
Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google ...
- 数学定理证明机械化的中国学派(II)
所谓"学派"是指:存在一帮人,具有同样或接近的学术观点或学术立场,採用某种特定的"方法"(或途径),在一个学术方向上共同开展工作.而且做出了相当有迎影响的学术成 ...
- Hammersley-Clifford定理证明
Proof of Hammersley-Clifford TheoremProof of Hammersley-Clifford Theorem依赖知识定义1定义2证明过程反向证明(吉布斯分布=> ...
- 【Learning】最小点覆盖(二分图匹配) 与Konig定理证明
(附一道例题) Time Limit: 1000 ms Memory Limit: 128 MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小 ...
- [自用]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...
- [自用]多项式类数学相关(定理&证明&板子)
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的 ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- [总结]多项式类数学相关(定理&证明&板子)
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代 ...
随机推荐
- UML-持久框架-目标&关键思想
1.目标 1).使用模板方法.状态模式.命令模式来设计部分框架 2).介绍对象-关系(O-R)映射中的一些问题 3).使用虚代理实现的滞后具体化 2.关键思想 1).映射(Mapping) 类--表 ...
- JS添加、设置属性以及鼠标移入移出事件
源代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl ...
- 瑞士军刀DLib的VS2015编译
Dlib的官方解释是: Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creati ...
- composer命令卡慢,使用国内源
执行composer install.update 和require的时候,遇到卡住不动的情况,可以切换到国内阿里云的源 composer config -g repo.packagist compo ...
- Cookie API和记录上次来访时间
1.什么是Cookie? Cookie是一种会话技术,用千将会话过程中的数据保存到用户的浏览器中,从而使浏览器和服务器可以更好地进行数据交互. 在现实生活中,当顾客在购物时,商城经常会赠送顾客一张会员 ...
- nodejs(13)模块加载机制
模块加载机制 优先从缓存中加载 当一个模块初次被 require 的时候,会执行模块中的代码,当第二次加载相同模块的时候,会优先从缓存中查找,看有没有这样的一个模块! 好处:提高模块的加载速度:不需要 ...
- Sqlserver 标量函数
以前只是了解标量函数这个概念,感觉使用量好像并不大,等我真正做sql编码的时候才发现它的好处.简直太方便了实用了. 我们知道在进行软件开发的时候要定义很多不同类型,每个类型又会分很多项.比如: 搞前端 ...
- 吴裕雄--天生自然Django框架开发笔记:Django简介
Python下有许多款不同的 Web 框架.Django是重量级选手中最有代表性的一位.许多成功的网站和APP都基于Django. Django是一个开放源代码的Web应用框架,由Python写成. ...
- go多态
package main import ( "fmt" ) type Intf interface { process() } type MsgBase struct { id ...
- MySQL--SQL分类
SQL语句主要可以划分为以下3个类别: DDL(Data Definition Languages)语句:数据定义语言,这些语句定义了不同的数据段.数据库.表.列.索引等数据库对象. 常用的语句关键字 ...