• 需求

    执行shell脚本 → 执行MR程序 → 执行hive程序

  • 1.准备工作目录
    cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works
    mkdir -p sereval-actions
  • 2.准备调度文件
    cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works
    cp hive2/script.q sereval-actions/
    cp shell/hello.sh sereval-actions/
    cp -ra map-reduce/lib sereval-actions/
  • 3.开发调度的配置文件
    cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/sereval-actions
    vim workflow.xml
    <workflow-app xmlns="uri:oozie:workflow:0.4" name="shell-wf">
    <start to="shell-node"/>
    <action name="shell-node">
    <shell xmlns="uri:oozie:shell-action:0.2">
    <job-tracker>${jobTracker}</job-tracker>
    <name-node>${nameNode}</name-node>
    <configuration>
    <property>
    <name>mapred.job.queue.name</name>
    <value>${queueName}</value>
    </property>
    </configuration>
    <exec>${EXEC}</exec>
    <!-- <argument>my_output=Hello Oozie</argument> -->
    <file>/user/root/oozie_works/sereval-actions/${EXEC}#${EXEC}</file> <capture-output/>
    </shell>
    <ok to="mr-node"/>
    <error to="mr-node"/>
    </action> <action name="mr-node">
    <map-reduce>
    <job-tracker>${jobTracker}</job-tracker>
    <name-node>${nameNode}</name-node>
    <prepare>
    <delete path="${nameNode}/${outputDir}"/>
    </prepare>
    <configuration>
    <property>
    <name>mapred.job.queue.name</name>
    <value>${queueName}</value>
    </property>
    <!--
    <property>
    <name>mapred.mapper.class</name>
    <value>org.apache.oozie.example.SampleMapper</value>
    </property>
    <property>
    <name>mapred.reducer.class</name>
    <value>org.apache.oozie.example.SampleReducer</value>
    </property>
    <property>
    <name>mapred.map.tasks</name>
    <value>1</value>
    </property>
    <property>
    <name>mapred.input.dir</name>
    <value>/user/${wf:user()}/${examplesRoot}/input-data/text</value>
    </property>
    <property>
    <name>mapred.output.dir</name>
    <value>/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}</value>
    </property>
    --> <!-- 开启使用新的API来进行配置 -->
    <property>
    <name>mapred.mapper.new-api</name>
    <value>true</value>
    </property> <property>
    <name>mapred.reducer.new-api</name>
    <value>true</value>
    </property> <!-- 指定MR的输出key的类型 -->
    <property>
    <name>mapreduce.job.output.key.class</name>
    <value>org.apache.hadoop.io.Text</value>
    </property> <!-- 指定MR的输出的value的类型-->
    <property>
    <name>mapreduce.job.output.value.class</name>
    <value>org.apache.hadoop.io.IntWritable</value>
    </property> <!-- 指定输入路径 -->
    <property>
    <name>mapred.input.dir</name>
    <value>${nameNode}/${inputdir}</value>
    </property> <!-- 指定输出路径 -->
    <property>
    <name>mapred.output.dir</name>
    <value>${nameNode}/${outputDir}</value>
    </property> <!-- 指定执行的map类 -->
    <property>
    <name>mapreduce.job.map.class</name>
    <value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
    </property> <!-- 指定执行的reduce类 -->
    <property>
    <name>mapreduce.job.reduce.class</name>
    <value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
    </property>
    <!-- 配置map task的个数 -->
    <property>
    <name>mapred.map.tasks</name>
    <value>1</value>
    </property> </configuration>
    </map-reduce>
    <ok to="hive2-node"/>
    <error to="fail"/>
    </action> <action name="hive2-node">
    <hive2 xmlns="uri:oozie:hive2-action:0.1">
    <job-tracker>${jobTracker}</job-tracker>
    <name-node>${nameNode}</name-node>
    <prepare>
    <delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-data/hive2"/>
    <mkdir path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-data"/>
    </prepare>
    <configuration>
    <property>
    <name>mapred.job.queue.name</name>
    <value>${queueName}</value>
    </property>
    </configuration>
    <jdbc-url>${jdbcURL}</jdbc-url>
    <script>script.q</script>
    <param>INPUT=/user/${wf:user()}/${examplesRoot}/input-data/table</param>
    <param>OUTPUT=/user/${wf:user()}/${examplesRoot}/output-data/hive2</param>
    </hive2>
    <ok to="end"/>
    <error to="fail"/>
    </action>
    <decision name="check-output">
    <switch>
    <case to="end">
    ${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'}
    </case>
    <default to="fail-output"/>
    </switch>
    </decision>
    <kill name="fail">
    <message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
    </kill>
    <kill name="fail-output">
    <message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
    </kill>
    <end name="end"/>
    </workflow-app>

    开发job.properties配置文件

    cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/sereval-actions
    vim job.properties
    nameNode=hdfs://node01:8020
    jobTracker=node01:8032
    queueName=default
    examplesRoot=oozie_works
    EXEC=hello.sh
    outputDir=/oozie/output
    inputdir=/oozie/input
    jdbcURL=jdbc:hive2://node03:10000/default
    oozie.use.system.libpath=true
    # 配置我们文件上传到hdfs的保存路径 实际上就是在hdfs 的/user/root/oozie_works/sereval-actions这个路径下
    oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/sereval-actions/workflow.xml
  • 4.上传资源文件夹到hdfs对应路径
    cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/
    hdfs dfs -put sereval-actions/ /user/root/oozie_works/
  • 5.执行调度任务
    cd /export/servers/oozie-4.1.0-cdh5.14.0/
    bin/oozie job -oozie http://node03:11000/oozie -config oozie_works/serveral-actions/job.properties -run

【Hadoop离线基础总结】oozie任务串联的更多相关文章

  1. 【Hadoop离线基础总结】oozie的安装部署与使用

    目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...

  2. 【Hadoop离线基础总结】Hue的简单介绍和安装部署

    目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...

  3. 【Hadoop离线基础总结】impala简单介绍及安装部署

    目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...

  4. 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发

    目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...

  5. 【Hadoop离线基础总结】Sqoop常用命令及参数

    目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...

  6. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  7. 【Hadoop离线基础总结】Hue与oozie集成

    目录 1.停止oozie与hue的进程 2.修改oozie的配置文件 3.修改hue的配置文件 4.启动hue与oozie的进程 5.页面访问hue 1.停止oozie与hue的进程 bin/oozi ...

  8. 【Hadoop离线基础总结】oozie调度MapReduce任务

    目录 1.准备MR执行的数据 2.执行官方测试案例 3.准备我们调度的资源 4.修改配置文件 5.上传调度任务到hdfs对应目录 6.执行调度任务 1.准备MR执行的数据 MR的程序可以是自己写的,也 ...

  9. 【Hadoop离线基础总结】oozie调度shell脚本

    目录 1.解压官方提供的调度案例 2.创建工作目录 3.拷贝任务模板到工作目录当中去 4.随意准备一个shell脚本 5.修改模板下的配置文件 6.上传调度任务到hdfs上面去 7.执行调度任务 1. ...

随机推荐

  1. threejs使用各种坑实验过程

    第一次使用threejs到实际项目中,开始的时候心情有点小激动,毕竟是第一次嘛,然而做着做着就感受到这玩意水好深,满满的都是坑,填都填不过来.经过老板20天惨无人道的摧残,终于小有成就. 因为第一次搞 ...

  2. python 3 的解释器

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:Yangtze PS:如有需要Python学习资料的小伙伴可以加点击下 ...

  3. python实现服务器监控报警消息用微信发送(附代码)

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:NicePython PS:如有需要Python学习资料的小伙伴可以加 ...

  4. python字节码,java字节码,十六进制相互转换

    下面是互相转换的代码: 有想要了解更多关于python知识的请在下方评论或私信小编

  5. stand up meeting 1/14/2016

    part 组员                工作              工作耗时/h 明日计划 工作耗时/h    UI 冯晓云  主要对生词本卡片的整体设计做修改:协助主程序完成popup部分 ...

  6. stand up meeting 1/7/2016

    part 组员                今日工作              工作耗时/h 明日计划 工作耗时/h    UI 冯晓云 调研下滑条的存在问题,尝试替换方案     6 全面实行替换 ...

  7. C - Trailing Zeroes (III) 二分

    You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in d ...

  8. MVC5+EasyUI+EF6增删改查的演示

    一.创建MVC项目 二.引入EasyUI 1.进入easyui官网下载源码 2. 将上述源码中需要的jquery 有选择的加到项目中来 添加Content文件夹,放入easyui代码 三.添加EF, ...

  9. poi导出word文档,doc和docx

    maven <!-- https://mvnrepository.com/artifact/org.apache.poi/poi --><dependency> <gro ...

  10. bootstrop日历

    https://blog.csdn.net/cuixiaobo521/article/details/77880633