Ujan has a lot of useless stuff in his drawers, a considerable part of which are his math notebooks: it is time to sort them out. This time he found an old dusty graph theory notebook with a description of a graph.

It is an undirected weighted graph on n vertices. It is a complete graph: each pair of vertices is connected by an edge. The weight of each edge is either 00 or 11; exactly m edges have weight 11, and all others have weight 00.

Since Ujan doesn't really want to organize his notes, he decided to find the weight of the minimum spanning tree of the graph. (The weight of a spanning tree is the sum of all its edges.) Can you find the answer for Ujan so he stops procrastinating?

Input

The first line of the input contains two integers n and m (1≤≤1051≤n≤105, 0≤≤min((−1)2,105)0≤m≤min(n(n−1)2,105)), the number of vertices and the number of edges of weight 11 in the graph.

The i-th of the next m lines contains two integers ai and bi (1≤,≤1≤ai,bi≤n, ≠ai≠bi), the endpoints of the i-th edge of weight 11.

It is guaranteed that no edge appears twice in the input.

Output

Output a single integer, the weight of the minimum spanning tree of the graph.

Examples
input

Copy

6 11
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6

output

Copy

2

input

Copy

3 0

output

Copy

0

Note

The graph from the first sample is shown below. Dashed edges have weight 00, other edges have weight 11. One of the minimum spanning trees is highlighted in orange and has total weight 22.

In the second sample, all edges have weight 00 so any spanning tree has total weight 00.

题意:完全图,给出一部分,求补图连通分量个数.

答案为连通分量个数减1, 用bitset优化太巧妙了~~~

对于每一个点(没有被访问过),枚举不和它相连并且没有访问过的点,依次dfs下去,得到一个连通分量.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010;
map<int,bool>mp[maxn];
bitset<maxn>bit;
void dfs(int u){
bit[u] = 0;
for(int i = bit._Find_first();i < bit.size();i = bit._Find_next(i)){
if(!mp[u][i])dfs(i);
}
}
int main()
{
int n,m;
cin >> n >> m;
for(int i = 1;i <= m;i++){
int u,v;
cin >> u >> v;
mp[u][v] = mp[v][u] = 1;
}
for(int i = 1;i <= n;i++)bit[i] = 1;
int sum = 0;
for(int i = 1;i <= n;i++){
if(bit[i])dfs(i),sum++;
}
cout << sum - 1 << endl;
return 0;
}

CodeForces - 1243D. 0-1 MST(补图连通分量个数)的更多相关文章

  1. SDUT 1488 数据结构实验:连通分量个数

    数据结构实验:连通分量个数 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description  在无向图中,如 ...

  2. SDUT OJ 之 连通分量个数 (dfs)

    数据结构实验:连通分量个数 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  在无向图中,如果从顶点vi到顶点vj有路径,则称vi ...

  3. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  4. [ActionScript 3.0] AS3 获取函数参数个数

    function createFunction(param1:String,param2:String,param3:int=0):void { trace(arguments.length);//a ...

  5. 调用类java.lang.Math的成员方法"public static double random"运算下面表达式10000次,统计其中生成的整数0,1,2,.....20的个数分别是多少,并输出统计结果.(int)(Math.random()*20+0.5)

    public class Test2 { public static void main(String args[]){ int num; int count[]=new int[21]; for(i ...

  6. CodeForces - 1243D (思维+并查集)

    题意 https://vjudge.net/problem/CodeForces-1243D 有一张完全图,n个节点 有m条边的边权为1,其余的都为0 这m条边会给你 问你这张图的最小生成树的权值 思 ...

  7. 求0到n之间素数个数的序列

    要求: (1) 找出0-1000之间素数(2) 设f(n)表示0-n之间的素数个数,计算出当n=0,1,2,3,.....,997时f(n)的值,并写入文件 分析: 首先找素数使用一个效率较高的方法- ...

  8. 数组中的数分为两组,让给出一个算法,使得两个组的和的差的绝对值最小,数组中的数的取值范围是0<x<100,元素个数也是大于0, 小于100 。

    比如a[]={2,4,5,6,7},得出的两组数{2,4,6}和{5,7},abs(sum(a1)-sum(a2))=0: 比如{2,5,6,10},abs(sum(2,10)-sum(5,6))=1 ...

  9. Codeforces 196E Opening Portals MST (看题解)

    Opening Portals 我们先考虑如果所有点都是特殊点, 那么就是对整个图求个MST. 想在如果不是所有点是特殊点的话, 我们能不能也 转换成求MST的问题呢? 相当于我们把特殊点扣出来, 然 ...

随机推荐

  1. c++链接mysql5.7

    1.单独安装mysql5.7 phpstudy安装的没有include和lib文件夹2.vs2013中右键属性 项目 - C/C++ - 常规 - 附加包含目录 里面添加 D:\**\include ...

  2. 九十八、SAP中ALV事件之十一,查看图片

    一.输入事务代码OAER 二.可以看到相关的图片文件了

  3. 八、JavaScript之执行语句

    一.代码如下 二.运行结果如下 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" cont ...

  4. java方法中使用js的alert。

    out.println("<script type=\"text/javascript\">"); out.println("alert( ...

  5. SpringMVC:提交日期类型报400错误解决方法

    方法1:可以使用@ControllerAdvice增强Controller @ControllerAdvice public class BaseControllerAdvice { // 初始化绑定 ...

  6. 08 SSM整合案例(企业权限管理系统):10.权限关联与控制

    04.AdminLTE的基本介绍 05.SSM整合案例的基本介绍 06.产品操作 07.订单操作 08.权限控制 09.用户操作 10.权限关联与控制 11.AOP日志 10.权限关联与控制 1.用户 ...

  7. ORM——Mybatis

    引言 ORM 是 blablabla…… Mybatis知识点

  8. POJ 1944:Fiber Communications

    Fiber Communications Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4236   Accepted: 1 ...

  9. Python基础+爬虫基础

    Python基础+爬虫基础 一.python的安装: 1.建议安装Anaconda,会自己安装一些Python的类库以及自动的配置环境变量,比较方便. 二.基础介绍 1.什么是命名空间:x=1,1存在 ...

  10. logrotate+crond日志切割、轮询

    logrotate 在工作中经常会有需求去查看日志,无论是通过应用或者系统error日志去查找问题或者通过nginx的访问日志统计站点日均PV.UV.所以体现了日志的重要性,但是通常当业务越来越大的时 ...