RNN,GRU,LSTM
2019-08-29 17:17:15
问题描述:比较RNN,GRU,LSTM。
问题求解:
- 循环神经网络 RNN

传统的RNN是维护了一个隐变量 ht 用来保存序列信息,ht 基于 xt 和 ht-1 来计算 ht 。
ht = g( Wi xt + Ui ht-1 + bi )
yt = g( Wo ht + bo )
- 门控循环神经网络 GRU

门控循环神经网络(Gated Recurrent Unit,GRU)中引入了门控机制。
Update:Γu = g( Wu xt + Uu ht-1 + bu )
ht~ = g( Wc xt + Uc ht-1 + bc ) -Candidate
ht = Γu * ht~ + Γf * ht-1
【注】实际使用中还会加入重置门,可以看成计算了 ht-1 和 xt 之间的相关性
Γr = g( Wr xt + Ur ht-1 + br )
ht~ = g( Wc xt + Γr Uc ht-1 + bc )
- 长短期记忆网络 LSTM

长短期记忆网络(Long Short Term Memory,LSTM)是循环神经网络的最知名和成功的扩展。由于循环神经网络有梯度消失和梯度爆炸的问题,学习能力有限,在实际的任务中往往不达预期。LSTM可以对有价值的信息进行长期记忆,从而减小循环神经网络的学习难度,因此在语音识别,NER,语言建模等问题中有着广泛的应用。
与传统的循环神经网络对比,LSTM仍然是基于xt 和 ht-1 来计算 ht ,只不过对计算的内部流程进行更加精心的设计。
LSTM中引入了cell memory称为 ct ,ht 由 cell memory生成。
LSTM在前向传播的时候不仅传递 ht ,而且还传递 cell memory,cell memory实际形成了一个信息的流通的highway。
LSTM中加入了三个门更新门(也有称为输入门) Γu,遗忘门 Γf,输出门 Γo。这里的门的概念可以理解为相关性,本质是三个权重。
Update:Γu = g( Wu xt + Uu ht-1 + bu )
Forget:Γf = g( Wf xt + Uf ht-1 + bf )
Output:Γo= g( Wo xt + Uo ht-1 + bo )
这三个门都是作用在cell memory上的,那么cell memory怎么计算呢?
ct~ = g( Wc xt + Uc ht-1 + bc )
ct = Γu * ct~ + Γf * ct-1
计算完成 ct 后,就可以根据输出门来求 ht 了。
ht = Γo * ct
RNN,GRU,LSTM的更多相关文章
- NLP教程(5) - 语言模型、RNN、GRU与LSTM
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- 【pytorch】关于Embedding和GRU、LSTM的使用详解
1. Embedding的使用 pytorch中实现了Embedding,下面是关于Embedding的使用. torch.nn包下的Embedding,作为训练的一层,随模型训练得到适合的词向量. ...
- 太深了,梯度传不下去,于是有了highway。 干脆连highway的参数都不要,直接变残差,于是有了ResNet。 强行稳定参数的均值和方差,于是有了BatchNorm。RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM。 LSTM简化一下,有了GRU。
请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及 ...
- LSTM梳理,理解,和keras实现 (一)
注:本文主要是在http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 这篇文章的基础上理解写成,姑且也可以称作 The understan ...
- 自己动手实现深度学习框架-7 RNN层--GRU, LSTM
目标 这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent U ...
- 简易机器学习代码(LR,Kmeans,NN,RNN)
Logistic Regression 特别需要注意的是 exp 和 log 的使用. sigmoid 原始表达式为 1 / (1+exp(-z)),但如果直接使用 z=-710,会显示 overfl ...
- 使用LSTM做电影评论负面检测——使用朴素贝叶斯才51%,但是使用LSTM可以达到99%准确度
基本思路: 每个评论取前200个单词.然后生成词汇表,利用词汇index标注评论(对 每条评论的前200个单词编号而已),然后使用LSTM做正负评论检测. 代码解读见[[[评论]]]!embeddin ...
- 三步理解--门控循环单元(GRU),TensorFlow实现
1. 什么是GRU 在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题.通常由于 ...
随机推荐
- 使用 KM 处理 HHKB 方向键
对于上了 HHKB 这条贼船的人来说,刚开始使用起来最大的别扭可能就是没有方向键的问题了. 最早的我使用 Karabiner 来解决,里边有一些内置的组合可以替代方向键,我用 control + hj ...
- 安卓注解处理器-processor
最近在学习安卓开源框架发现,很多的开源框架都使用到了注解处理器,例如EventBus3.0.本文通过一个简单的Demo来介绍如何使用注解处理器.Demo链接为https://github.com/cu ...
- Hadoop2.7搭建
Hadoop最底部是 Hadoop Distributed File System(HDFS),它存储Hadoop集群中所有存储节点上的文件.HDFS(对于本文)的上一层是MapReduce 引擎,该 ...
- 30s源码刨析系列之函数篇
前言 由浅入深.逐个击破 30SecondsOfCode 中函数系列所有源码片段,带你领略源码之美. 本系列是对名库 30SecondsOfCode 的深入刨析. 本篇是其中的函数篇,可以在极短的时间 ...
- Requests功能整理
import requests # GET r = requests.get('https://api.github.com/events') # POSTr = requests.post('htt ...
- Elasticsearch系列---深入全文搜索
概要 本篇介绍怎样在全文字段中搜索到最相关的文档,包含手动控制搜索的精准度,搜索条件权重控制. 手动控制搜索的精准度 搜索的两个重要维度:相关性(Relevance)和分析(Analysis). 相关 ...
- 《OneForAll框架搭建之旅》前端篇:微前端架构设计(Vue)
心之所向,勇往直前!记录开发过程中的那些小事,给自己加点经验值. 前言 作为一个.Net后端开发,在竞争愈加激烈的当下,掌握点前端配菜好像已经是家常便饭了. 刚好在工作的第5个年头,辞去小主管职务的我 ...
- 3DGIS+BIM集成与智慧城市应用
ZTMap3D是基于网络的三维地理信息系统平台软件,利用 ZTMap3D能够实现三维地理信息和虚拟现实,是数字化地球和数字化城市建设的基础平台. BIM(building information mo ...
- JVM04——七个GC垃圾收集器,一个都不能少
了解了JVM内存区域与垃圾回收算法,今天将为各位带来关于垃圾收集器的知识.关注我的公众号「Java面典」了解更多 Java 相关知识点. Java 堆内存被划分为新生代和老年代两部分,因此 JVM 通 ...
- C语言程序设计(四) 键盘输入和屏幕输出
第四章 键盘输入和屏幕输出 转义字符 \n 换行,光标移到下一行的起始位置 \r 回车(不换行),光标移到当前行的起始位置 \0 空字符 \t 水平制表 \v 垂直制表 \b 退格 \f 走纸换页 \ ...