Java并发编程实战 03互斥锁 解决原子性问题
文章系列
Java并发编程实战 01并发编程的Bug源头
Java并发编程实战 02Java如何解决可见性和有序性问题
摘要
在上一篇文章02Java如何解决可见性和有序性问题当中,我们解决了可见性和有序性的问题,那么还有一个原子性
问题咱们还没解决。在第一篇文章01并发编程的Bug源头当中,讲到了把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性,那么原子性的问题该如何解决。
同一时刻只有一个线程执行这个条件非常重要,我们称为互斥,如果能保护对共享变量的修改时互斥的,那么就能保住原子性。
简易锁
我们把一段需要互斥执行的代码称为临界区,线程进入临界区之前,首先尝试获取加锁,若加锁成功则可以进入临界区执行代码,否则就等待,直到持有锁的线程执行了解锁unlock()
操作。如下图:
但是有两个点要我们理解清楚:我们的锁是什么?要保护的又是什么?
改进后的锁模型
在并发编程世界中,锁和锁要保护的资源是有对应关系的。
首先我们需要把临界区要保护的资源R
标记出来,然后需要创建一把该资源的锁LR
,最后针对这把锁,我们需要在进出临界区时添加加锁lock(LR)
操作和解锁unlock(LR)
操作。如下:
Java语言提供的锁技术:synchronized
synchronized
可修饰方法和代码块。加锁lock()
和解锁unlock()
都会在synchronized
修饰的方法或代码块前后自动加上加锁lock()
和解锁unlock()
操作。这样做的好处就是加锁和解锁操作会成对出现,毕竟忘了执行解锁unlock()
操作可是会让其他线程死等下去。
那我们怎么去锁住需要保护的资源呢?在下面的代码中,add1()
非静态方法锁定的是this
对象(当前实例对象),add2()
静态方法锁定的是X.class
(当前类的Class对象)
public class X {
public synchronized void add1() {
// 临界区
}
public synchronized static void add2() {
// 临界区
}
}
上面的代码可以理解为这样:
public class X {
public synchronized(this) void add() {
// 临界区
}
public synchronized(X.class) static void add2() {
// 临界区
}
}
使用synchronized 解决 count += 1 问题
在01 并发编程的Bug源头文章当中,我们提到过count += 1 存在的并发问题,现在我们尝试使用synchronized
解决该问题。
public class Calc {
private int value = 0;
public synchronized int get() {
return value;
}
public synchronized void addOne() {
value += 1;
}
}
addOne()
方法被synchronized
修饰后,只有一个线程能执行,所以一定能保证原子性,那么可见性问题呢?在上一篇文章02 Java如何解决可见性和有序性问题当中,提到了管程中的锁规则,一个锁的解锁 Happens-Before 于后续对这个锁的加锁。管程,在这里就是synchronized
(管程的在后续的文章中介绍)。根据这个规则,前一个线程执行了value += 1
操作是对后续线程可见的。而查看get()
方法也必须加上synchronized
修饰,否则也没法保证其可见性。
上面这个例子如下图:
那么可以使用多个锁保护一个资源吗,修改一下上面的例子后,get()
方法使用this
对象锁来保护资源value
,addOne()
方法使用Calc.class
类对象来保护资源value
,代码如下:
public class Calc {
private static int value = 0;
public synchronized int get() {
return value;
}
public static synchronized void addOne() {
value += 1;
}
}
上面的例子用图来表示:
在这个例子当中,get()
方法使用的是this
锁,addOne()
方法使用的是Calc.class
锁,因此这两个临界区(方法)并没有互斥性,addOne()
方法的修改对get()
方法是不可见的,所以就会导致并发问题。
结论:不可使用多把锁保护一个资源,但能使用一把锁保护多个资源(这里没写例子,只写了一把锁保护一个资源)
保护没有关联关系的多个资源
在银行的业务当中,修改密码和取款是两个再经常不过的操作了,修改密码操作和取款操作是没有关联关系的,没有关联关系的资源我们可以使用不同的互斥锁来解决并发问题。代码如下:
public class Account {
// 保护密码的锁
private final Object pwLock = new Object();
// 密码
private String password;
// 保护余额的锁
private final Object moneyLock = new Object();
// 余额
private Long money;
public void updatePassword(String password) {
synchronized (pwLock) {
// 修改密码
}
}
public void withdrawals(Long money) {
synchronized (moneyLock) {
// 取款
}
}
}
分别使用pwLock
和moneyLock
来保护密码和余额,这样修改密码和修改余额就可以并行了。使用不同的锁对受保护的资源进行进行更细化管理,能够提升性能,这种锁叫做细粒度锁。
在这个例子当中,你可能发现我使用了final Object
来当成一把锁,这里解释一下:使用锁必须是不可变对象,若把可变对象作为锁,当可变对象被修改时相当于换锁,而且使用Long
或Integer
作为锁时,在-128到127
之间时,会使用缓存,详情可查看他们的valueOf()
方法。
保护有关联关系的多个资源
在银行业务当中,除了修改密码和取款的操作比较多之外,还有一个操作比较多的功能就是转账。账户 A 转账给 账户B 100元,账户A的余额减少100元,账户B的余额增加100元,那么这两个账户就是有关联关系的。在没有理解互斥锁之前,写出的代码可能如下:
public class Account {
// 余额
private Long money;
public synchronized void transfer(Account target, Long money) {
this.money -= money;
if (this.money < 0) {
// throw exception
}
target.money += money;
}
}
在转账transfer
方法当中,锁定的是this
对象(用户A),那么这里的目标用户target
(用户B)的能被锁定吗?当然不能。这两个对象是没有关联关系的。正确的操作应该是获取this
锁和target
锁才能去进行转账操作,正确的代码如下:
public class Account {
// 余额
private Long money;
public synchronized void transfer(Account target, Long money) {
synchronized(this) {
synchronized (target) {
this.money -= money;
if (this.money < 0) {
// throw exception
}
target.money += money;
}
}
}
}
在这个例子当中,我们需要清晰的明白要保护的资源是什么,只要我们的锁能覆盖所有受保护的资源就可以了。
但是你以为这个例子很完美?那就错了,这里面很有可能会发生死锁。你看出来了吗?下一篇文章我就用这个例子来聊聊死锁。
总结
使用互斥锁最最重要的是:我们的锁是什么?锁要保护的资源是什么?,要理清楚这两点就好下手了。而且锁必须为不可变对象。使用不同的锁保护不同的资源,可以细化管理,提升性能,称为细粒度锁。
参考文章:
极客时间:Java并发编程实战 03互斥锁(上)
极客时间:Java并发编程实战 04互斥锁(下)
个人博客网址: https://colablog.cn/
如果我的文章帮助到您,可以关注我的微信公众号,第一时间分享文章给您
Java并发编程实战 03互斥锁 解决原子性问题的更多相关文章
- 《Java并发编程实战》笔记-锁与原子变量性能比较
如果线程本地的计算量较少,那么在锁和原子变量上的竞争将非常激烈.如果线程本地的计算量较多,那么在锁和原子变量上的竞争会降低,因为在线程中访问锁和原子变量的频率将降低. 在高度竞争的情况下,锁的性能将超 ...
- Java并发编程实战(chapter_1)(原子性、可见性)
混混噩噩看了很多多线程的书籍,一直认为自己还不够资格去阅读这本书.有种要高登大堂的感觉,被各种网络上.朋友.同事一顿外加一顿的宣传与传颂,多多少少再自我内心中产生了一种敬畏感.2月28好开始看了之后, ...
- Java并发编程实战 04死锁了怎么办?
Java并发编程文章系列 Java并发编程实战 01并发编程的Bug源头 Java并发编程实战 02Java如何解决可见性和有序性问题 Java并发编程实战 03互斥锁 解决原子性问题 前提 在第三篇 ...
- Java并发编程实战 05等待-通知机制和活跃性问题
Java并发编程系列 Java并发编程实战 01并发编程的Bug源头 Java并发编程实战 02Java如何解决可见性和有序性问题 Java并发编程实战 03互斥锁 解决原子性问题 Java并发编程实 ...
- Java并发编程实战 02Java如何解决可见性和有序性问题
摘要 在上一篇文章当中,讲到了CPU缓存导致可见性.线程切换导致了原子性.编译优化导致了有序性问题.那么这篇文章就先解决其中的可见性和有序性问题,引出了今天的主角:Java内存模型(面试并发的时候会经 ...
- 【Java并发编程实战】----- AQS(二):获取锁、释放锁
上篇博客稍微介绍了一下AQS,下面我们来关注下AQS的所获取和锁释放. AQS锁获取 AQS包含如下几个方法: acquire(int arg):以独占模式获取对象,忽略中断. acquireInte ...
- 【java并发编程实战】-----线程基本概念
学习Java并发已经有一个多月了,感觉有些东西学习一会儿了就会忘记,做了一些笔记但是不系统,对于Java并发这么大的"系统",需要自己好好总结.整理才能征服它.希望同仁们一起来学习 ...
- java并发编程实战学习(3)--基础构建模块
转自:java并发编程实战 5.3阻塞队列和生产者-消费者模式 BlockingQueue阻塞队列提供可阻塞的put和take方法,以及支持定时的offer和poll方法.如果队列已经满了,那么put ...
- 【Java并发编程实战】-----“J.U.C”:ReentrantReadWriteLock
ReentrantLock实现了标准的互斥操作,也就是说在某一时刻只有有一个线程持有锁.ReentrantLock采用这种独占的保守锁直接,在一定程度上减低了吞吐量.在这种情况下任何的"读/ ...
随机推荐
- python3(十六)returnFunc
# 通常求和函数定义,调动就求和 def calc_sum(*args): ax = 0 for n in args: ax = ax + n return ax # 如果不需要立即求和 def la ...
- 数据结构和算法(Golang实现)(27)查找算法-二叉查找树
二叉查找树 二叉查找树,又叫二叉排序树,二叉搜索树,是一种有特定规则的二叉树,定义如下: 它是一颗二叉树,或者是空树. 左子树所有节点的值都小于它的根节点,右子树所有节点的值都大于它的根节点. 左右子 ...
- HttpWebRequest在Post的时候,遇到特殊符号+号(加号)变成空格了
今天在调用一个外部接口的时候遇到一个问题,外部接口说要用FOMR的POST方法提交. OK,没问题,我加了个ASPX页面,里面加了个FORM表单和一些元素,提交,返回值成功.注意看下面这一句:但返回值 ...
- 三分钟教会你Python数据分析—数据导入,小白基础入门必看内容
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:小白 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行 ...
- stand up meeting 11/26/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 完成UI简易界面布局设计:在UI部分实现释义数据格式转换的实现和测试,使得其与外界接口均标准化为string,具体实现见 ...
- CSS- 一些少用的
1. 字体间距 1.)word-spacing: 2.)letter-spacing: 3.)text-indent 4.)text-align-last: justify; 和 text-align ...
- jmeter引入外部jar包的方法
jmeter最完美的jar包引入 第一步:需要新建一个文件夹用来存放需要引用的外部jar包,例如:建一个dependencies 文件夹 第二步:jmeter 的配置文件 jmeter.propert ...
- WEBMIN(CVE-2019-15107) 学习
简单介绍: Webmin是目前功能最强大的基于Web的Unix系统管理工具.管理员通过浏览器访问Webmin的各种管理功能并完成相应的管理动作.目前Webmin支持绝大多数的Unix系统,这些系统除了 ...
- 8个超好用的Python内置函数,提升效率必备(小白必看)
python中有许多内置函数,不像print那么广为人知,但它们却异常的强大,用好了可以大大提高代码效率. 这次来梳理下8个好用的python内置函数. 1.set() 当需要对一个列表进行去重操作的 ...
- IntelliJ IDEA在mac中完全删除方法
cd /Applications/ rm -r IntelliJ\ IDEA.app/ rm -r /Users/apple/Library/Logs/IntelliJIdea2019.3/ rm - ...