python数据分析工具 | matplotlib
不论是数据挖掘还是数学建模,都免不了数据可视化的问题。对于 Python 来说,matplotlib 是最著名的绘图库,它主要用于二维绘图,当然也可以进行简单的三维绘图。它不但提供了一整套和 Matlab 相似但更为丰富的命令,让我们可以非常快捷地用 python 可视化数据。
matplotlib基础
# 安装
pip install matplotlib
两种绘图风格:
MATLAB风格:
基本函数是 plot,分别取 x,y 的值,然后取到坐标(x,y)后,对不同的连续点进行连线。
面向对象:
创建一个图形 fig 和一个坐标 ax 。
fig:figure(plt.Figure) 是一个能容纳各种坐标轴,图形,文字和标签的容器。
ax:axes(plt.Axes) 是一个带有刻度和标签的矩形,最终会包含各种可视化元素。
示例:
import matplotlib.pyplot as plt
import numpy as np # 图形显示风格
plt.style.use('seaborn-whitegrid') # 创建fig和ax
fig = plt.figure()
ax = plt.axes() x = np.linspace(0,10,100)
# 显示sin函数图形
plt.plot(x, np.sin(x))
# 显示cos函数图形
plt.plot(x, np.cos(x)) plt.show()

这就是利用面向对象的方式绘图,在交互模式中可以看到,每画一个图就是产生一个对象,最后再显示出来。

绘图样式

# 调整坐标轴上下限
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax]) plt.axis([xmin, xmax, ymin, ymax])
# 参数:tight:把图形设置成紧凑模式,不留多余的部分
# equal:图形显示分辨率为1:1
线形图
文字设置
图形标题:plt.title
坐标轴标题:plt.xlabel, plt.ylabel
基础图例:plt.legend
注意:对中文不友好,需要额外方法,尽量使用英文
# 示例
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(1, 10, 100)
plt.plot(x, np.sin(x))
plt.title('sin-function')
plt.xlabel('x-value')
plt.ylabel('y-label')
plt.show()

图例
通过legend可以设置图例,同时通过参数的调整可以细腻的设置图例的位置、形式等。参数主要包括:
loc:图例的位置
frameon:是否带边框
framealpha:颜色透明
shadow:阴影
# 示例
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(1, 10, 100) fig, ax = plt.subplots() ax.plot(x, np.sin(x), color='red', label='sin-function')
ax.plot(x, np.cos(x), color='blue', label='cos-function') ax.legend(loc='upper right', frameon=True, shadow=True, framealpha=0.2)
# 设置图例位置为右上,有边框,有阴影,且透明度为0.2 plt.show()

颜色条
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(1, 10, 100)
I = np.sin(x) * np.cos(x[:,np.newaxis]) plt.imshow(I)
plt.colorbar()
plt.show()

散点图
散点图基础
散点图主要以点为主,数据是不连续的数据,通过设置线的型号来完成。型号包括‘o’、‘+’、‘*’、‘1’、‘h’、‘D’等等,具体使用探索一下就好,用不到太多。
import matplotlib.pyplot as plt
import numpy as np # 图形显示风格
plt.style.use('seaborn-whitegrid') x = np.linspace(0, 10, 30)
y = np.sin(x) # 通过设置线型为点来完成散点图的绘制
plt.plot(x, y, 'o', color='blue')
plt.show()

如果设置线型为点线结合,那么将绘制出连续的线,对应点处为所设置的点型。
画散点图还可以使用scatter函数来画,他有很多更细节的描述,用法与plot类似,对于数据量较大的可视化时,plot的效率更高一些。
误差线
import matplotlib.pyplot as plt
import numpy as np # 图形显示风格
plt.style.use('seaborn-whitegrid') x = np.linspace(0, 10, 30)
dy = x * 0.5
y = np.sin(x) + dy plt.errorbar(x, y, yerr=dy, fmt='.k', ecolor='blue')
plt.show()

连续误差线表示的是连续量,可以使用 plt.plot 和 plt.fill_between 来画出。
import matplotlib.pyplot as plt
import numpy as np # 图形显示风格
plt.style.use('seaborn-whitegrid') x = np.linspace(0, 10, 30)
ysin = np.sin(x)
ycos = np.cos(x) plt.plot(x, ysin, color='red')
plt.plot(x, ycos, color='blue') plt.fill_between(x, ysin, ycos, color='gray', alpha=0.2)
plt.show()

等高线(密度)
plt.contour 等高线
plt.contourf 自带填充颜色
plt.imshow 显示图形
等高线绘制方法:z = f(x,y),z表示高度。当只有一个颜色绘图时,虚线表示负值,实线表示正值。meshgrid 可以将一维数据变成二维网格数据。
import matplotlib.pyplot as plt
import numpy as np def f(x, y):
return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40) # 得到网格点矩阵
x, y =np.meshgrid(x, y) # 计算z轴的值
z = f(x, y) # 绘制图形
plt.contour(x, y, z, colors='green')
# plt.contour(x, y, z, 50, cmap='RdGy') # 更改配色,值50等分,红灰配色
plt.show()


plt.contourf(x, y, z, 50, cmap='RdGy') # 改为contourf,自动填充颜色,则变为连续的

直方图
基本画法:plt.hist 可以直接画直方图,参数主要包括:
bins:划分段(柱数)
color:颜色
alpha:透明度
histtype:图类型
import matplotlib.pyplot as plt
import numpy as np data = np.random.randn(1000)
plt.hist(data, bins=30, alpha=0.3, histtype='stepfilled', color='blue', edgecolor='none')
plt.show()

程序中 random.randn 与 random.rand 相比,randn表示随机生成的数符合正态分布,因此画出图来是如上图所示。
子图
plt.subplot(2,1,1) # 子图,(2,1,1)代表,创建2*1的画布,并且定位于画布1 ;等效于plt.subplot(211),即去掉逗号
# subplots 可以同时创建多个子图
figure,ax = plt.subplots(2, 3)
# 这是一个灵活创建子图的方法,可以创建任意组合的图形,不必一一对齐,以下为示例:
grid = plt.GridSpec(2, 3, wspace=0.3, hspace=0.2)
plt.subplot(grid[,:2])
plt.subplot(grid[1,1:3])

图例配置
文字注释
通过不同的坐标变换,可以把文字放在不同的位置:
ax.transData:以数据为基准
ax.transAxes:以轴为基准
import matplotlib.pyplot as plt
import numpy as np fig, ax = plt.subplots()
ax.axis = ([0, 1, 0, 1]) ax.text(0.5, 0.5, "Data:(0.5, 0.5)", transform=ax.transData)
ax.text(0.5, 0.1, "Axes:(0.5, 0.1)", transform=ax.transAxes)
plt.show()

箭头注释
plt.arrow:产生SVG向量图形式的箭头,会随着分辨率改变而改变,不推荐
plt.annotate:可以创建文字和箭头
import matplotlib.pyplot as plt
import numpy as np fig, ax = plt.subplots() x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal') ax.annotate("max", xy=(6.28, 1), xytext=(10, 4), arrowprops=dict(facecolor='black', shrink=0.05))
ax.annotate('min', xy=(5 * np.pi, -1), xytext=(2, -6), arrowprops=dict(arrowstyle="->", connectionstyle='angle3, angleA=0, angleB=-90'))
plt.show()

三维图
基础三维图
matplotlib 中绘制三维图用到 mplot3d 包。导入 mplot3d 包后,可以利用 projection 参数,控制绘制三维图。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d fig = plt.figure()
ax = plt.axes(projection='3d') plt.show()

三维图中当然包含三个轴,x,y,z。画线 ax.plot3D,画点 ax.scatter3D。为了三维效果,它会自动将远处的点颜色变浅。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d fig = plt.figure()
ax = plt.axes(projection='3d') z = np.linspace(0, 15, 100)
x = np.sin(z)
y = np.cos(z) ax.plot3D(x, y, z, 'red')
ax.scatter3D(x, y, z, 'blue')
plt.show()

三维等高线
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d fig = plt.figure()
ax = plt.axes(projection='3d') def f(x, y):
return np.sin(np.sqrt(x ** 2 + y ** 2)) x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y =np.meshgrid(x, y)
Z = f(X, Y) ax.contour3D(X, Y, Z, 50)
plt.show()

图形绘制出来后,可以通过 ax.view_init 来控制观察的角度,便于理解。
俯仰角度:x-y 平面的旋转角度
方位角度:沿着 z 轴顺时针旋转角度
pandas绘图
上篇文章讲述了 pandas 的基本用法,pandas 是数据分析中最重要的工具之一,这里补充一下 pandas 绘图。
Series绘图
# 这是一个小栗子
s1 = Series(np.random.randint(1000).cumsum()) # 创建series,cumsum()是指叠加求和,本位数是前几项之和
s1.plot() # series有自己的plot函数,里面可以写入想要的参数
DataFrame绘图
df = DataFrame(
np.random.randint(1,10,40).reshape(10,4),
columns=['A','B','C','D']
)
df.plot()
# dataframe也有自己的plot,按列画出来,参数包含ax,选择输出的画布
# 参数:stacked=True,表示一个堆叠的情况,同一个index下,columns一不同颜色叠在一起
python数据分析工具 | matplotlib的更多相关文章
- Python数据分析工具:Pandas之Series
Python数据分析工具:Pandas之Series Pandas概述Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建.Pandas纳入大量库和标准数据模型,提供高效的操作数 ...
- python数据分析工具安装集合
用python做数据分析离不开几个好的轮子(或称为科学棧/第三方包等),比如matplotlib,numpy, scipy, pandas, scikit-learn, gensim等,这些包的功能强 ...
- python绘图工具matplotlib在linux下安装和使用
工具介绍:matplotlib 是Python编程语言的一个绘图库及其数值数学扩展 NumPy.它为利用通用的图形用户界面工具包, 如Tkinter, wxPython, Qt或GTK+向应用程序嵌入 ...
- Python数据分析--工具安装及Numpy介绍(1)
Anaconda 是一个跨平台的版本,通过命令行来管理安装包.进行大规模数据处理.预测分析和科学计算.它包括近 200 个工具包,大数据处理需要用到的常见包有 NumPy . SciPy . pand ...
- python 数据分析工具之 numpy pandas matplotlib
作为一个网络技术人员,机器学习是一种很有必要学习的技术,在这个数据爆炸的时代更是如此. python做数据分析,最常用以下几个库 numpy pandas matplotlib 一.Numpy库 为了 ...
- 高效使用 Python 可视化工具 Matplotlib
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...
- Python 可视化工具 Matplotlib
英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...
- python数据分析工具——Pandas、StatsModels、Scikit-Learn
Pandas Pandas是 Python下最强大的数据分析和探索工具.它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单. Pandas构建在 Numpy之上,它使得以 ...
- python数据分析工具 | pandas
pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pa ...
随机推荐
- 【Java面试题】关于String,最近被问到了这2道面试题
1. 前言 最近面试了几家公司,体验了一下电话面试和今年刚火起来的视频面试, 虽然之前就有一些公司会先通过电话面试的形式先评估下候选人的能力水平,但好像不多,至少我以前的面试形式100%都是现场面试. ...
- seo搜索优化教程14-seo搜索优化实战
为了使大家更方便的了解及学习网络营销推广.seo搜索优化,星辉信息科技强势推出seo搜索优化教程.此为seo教程第14课 根据前面学习的seo搜索优化内容,星辉科技进行总结性的分析,形成一份标准的se ...
- 实验一 Linux系统与应用准备(嵌入式Linux工程师的“修真之路”)
作业格式 项目 内容 这个作业属于哪个课程 这里是链接[https://edu.cnblogs.com/campus/nchu/2020SpringSystemAndApplication] 这个作业 ...
- python学习-练习题4巩固
一个数加100后是一个整数的平方,加268后也是一个数的平方,求这个数 分析:这个数加100之后开方是整数,说明int(math.sqrt(a+100))转为整数应该没有小数部分 so:b*b = i ...
- c strncpy 容易出错的地方
使用strncpy的是注意两点,目的是数组和目的是指针 .目的是数组: ] = "abcde"; // ] = "; strncpy(dest,src,N); dest[ ...
- ASP.NET 开源导入导出库Magicodes.IE 完成Excel图片导入导出
Magicodes.IE Excel图片导入导出 为了更好的根据实际功能来迭代,从2.2的里程碑规划开始,我们将结合社区的建议和意见来进行迭代,您可以点此链接来提交您的意见和建议: https://g ...
- 玩转控件:重写/重绘Dev中MessageBox弹窗控件
很久没有更新博客了,本想着直接发一篇<手撕ERP>系列,从控件重写.重绘,到框架搭建,再到部分模块实现+业务的.但是每次动手的时候,都觉得难以下手.直接从数据库设计开始吧,模块设计还没定下 ...
- 记一次Maven发布Jar包中文乱码解决方法
Maven deploy 乱码 今天使用Maven发布Jar包时,发布功能都是正常的也成功上传到了仓库,就是项目跑越来后出中文中现了乱码: { "code": "SUCC ...
- 在vscode中怎样debug调试go程序
随着互联网时代的飞速发展,我们编码使用的开发利器也在不断更新换代,古话说工欲善其事必先利其器,对于Java开发者而言,eclipse和idea这两款神器各有千秋,因自己的爱好可以选取不同的IDE,但是 ...
- 靓仔,整合SpringBoot还在百度搜配置吗?老司机教你一招!!!
导读 最近陈某公司有些忙,为了保证文章的高质量可能要两天一更了,在这里陈某先说声不好意思了!!! 昨天有朋友问我SpringBoot如何整合Redis,他说百度谷歌搜索了一遍感觉不太靠谱.我顿时惊呆了 ...