Codeforces Round #258 (Div. 2)

E. Devu and Flowers
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

Input

The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

Output

Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

Sample test(s)
Input
2 3
1 3
Output
2
Input
2 4
2 2
Output
1
Input
3 5
1 3 2
Output
3
Note

Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.

Sample 2. There is only one way of selecting 4 flowers: {2, 2}.

Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.

题意:有N种花,每种最多f[i]枝,从中选s枝花,问有多少种选法。

题解:隔板法+容斥原理+Lucas定理算大组合数+求逆元

如此难的题,我不懂!我是看 http://hzwer.com/3810.html 学会的。

首先看没有f[i]枝数限制的话,可以用隔板法,N种花选s枝,相当于s个相同的球放到N个箱子有多少种放法。隔板法要求每个箱子至少放1个球,所以我们先增加N个假球来搞隔板法(相当于隔完板把每个盒子去掉一个球,就能算到有空的的情况了),N+s个球有N+s-1个空隙,分N个箱子需要N-1个隔板,种类数有C(N+s-1 , N-1)种。

然后观察有f[i]限制的情况。我们可以假装取超了,假装已经在第i个盒子取了f[i]+1个球,把总球数减去(f[i]+1),用这个总球数可以用C(N'+s-1,N'-1)算出取超了的情况的种类数。

然后可能有0个盒子取超、1个盒子盒子取超、2个盒子取超……等等好多情况,这些情况还有互相重复的,这就要用到容斥原理。

ans=0个超的情况数 - 各种1个超的情况数 +各种2个超的情况数 - 各种3个超的情况数……

知道要算什么了,接下来看怎么算。

N<=20,s<=10^14,各种盒子取超的情况可以2^20枚举。算C(N+s-1 - ...    , N-1)就比较难,不可能直接算。

用到Lucas定理:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p),左边继续递归Lucas,右边用逆元来算。

怎么用逆元:C(n,m)不是先算出分子和分母,然后分子除以分母嘛,我们可以当做用分子乘以分母的逆元。分母的逆元可以用超碉的一个定理:

费马小定理a^(p-1)=1(mod p),a为质数

a^(p-2)=a^(-1)(mod p),那么a^(p-2)就是a在modp意义下的逆元。

我们就用快速幂求出分母^(p-2),就是逆元了。

用这么多知识才能解E题,我都怕,是时候变碉了。

代码:

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) const ll maxs=1e14;
const ll MOD=1e9+;
ll a[];
ll n,s,ans; ll PowerMod(ll a, ll b) {
ll tmp = a, ret = ;
while (b) {
if (b & ) ret = ret * tmp % MOD;
tmp = tmp * tmp % MOD;
b >>= ;
}
return ret;
} ll calC(ll n,ll m){
m=n-m>m?m:n-m;
ll up=,down=;
int i;
for(i=;i<=m;i++){
down*=i;
down%=MOD;
up*=(n-i+);
up%=MOD;
}
return (up*PowerMod(down,MOD-))%MOD;
} ll Lucas(ll n, ll m) {
if(m==)return ;
return (Lucas(n/MOD, m/MOD)*calC(n%MOD, m%MOD))%MOD;
} void attack(ll now,ll sum,ll flag){
if(sum<n)return;
if(now==n){
//printf("%I64d C(%I64d,%I64d)=",flag,sum-1 , n-1);
//printf("%I64d\n",Lucas(sum-1,n-1));
ans+=flag*Lucas(sum- , n-);
ans%=MOD;
return;
}
attack(now+,sum,flag);
attack(now+,sum-a[now]-,-flag);
} int main() {
int i;
scanf("%I64d%I64d",&n,&s);
REP(i,n) scanf("%I64d",&a[i]);
ans=;
attack(,n+s,);
printf("%I64d\n",((ans%MOD)+MOD)%MOD);
return ;
}

CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)的更多相关文章

  1. CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...

  2. CF451E Devu and Flowers 解题报告

    CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...

  3. CF451E Devu and Flowers(容斥)

    CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...

  4. bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)

    Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...

  5. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  6. hdu6397 Character Encoding 隔板法+容斥原理+线性逆元方程

    题目传送门 题意:给出n,m,k,用m个0到n-1的数字凑出k,问方案数,mod一个值. 题目思路: 首先如果去掉数字范围的限制,那么就是隔板法,先复习一下隔板法. ①k个相同的小球放入m个不同的盒子 ...

  7. CF451E Devu and Flowers 数论

    正解:容斥+Lucas定理+组合数学 解题报告: 传送门! 先mk个我不会的母函数的做法,,, 首先这个题的母函数是不难想到的,,,就$\left (  1+x_{1}^{1}+x_{1}^{2}+. ...

  8. 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

    题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...

  9. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. 【小白的CFD之旅】07 CFD常识

    学了一周的流体力学,小白对于流体力学有了基本的了解,但是流体力学涵盖的内容何其之多,一周的时间怎么可能学得好呢,很多的概念都是模棱两可.为了在一个月之后能够应用CFD,小白又找到了黄师姐. “师姐,看 ...

  2. [WPF系列]-Adorner

      简介 通常我们想对现有的控件,做些修饰时我们就会想到一个装饰模式.WPF中也提供了这样的实现思路:通过将Adorner添加到AdornerLayer中来实现装饰现有控件的效果.如图示:   本来T ...

  3. monkeyrunner之录制与回放(七)

    monkeyrunner为我们提供了录制 回放的功能. 录制与回放使用原因:实际项目,需求变更频繁,且测试任务多,我们没有足够时间去写测试脚本,这是就可以进行录制脚本,然后通过回放,跑完需要的流程. ...

  4. 使用Office 365抓取PM2.5数据

    近日微软发布了Microsoft Flow,一个类似IFTTT自动化任务触发工具.例如,我们可以设置这样一个触发事件和对应的处理过程:当有人在微博上@我的时候,发一封邮件通知我:当我关注的博主有新文章 ...

  5. Serial Communication Protocol Design Hints And Reference

    前面转载的几篇文章详细介绍了UART.RS-232和RS-485的相关内容,可以知道,串口通信的双方在硬件层面需要约定如波特率.数据位.校验位和停止位等属性,才可以正常收发数据.实际项目中使用串口通信 ...

  6. MyBatis入门案例、增删改查

    一.MyBatis入门案例: ①:引入jar包 ②:创建实体类 Dept,并进行封装 ③ 在Src下创建大配置mybatis-config.xml <?xml version="1.0 ...

  7. plupload 如何控制最小宽度和文件类型及跨域

    直接上代码 plupload.addFileFilter('min_width', function (maxwidth, file, cb) { var self = this, img = new ...

  8. LeetCode:Max Points on a Line

    题目链接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight l ...

  9. npoi批量导入实现及相关技巧

    批量导入功能对于大部分后台系统来说都是不可或缺的一部分,常见的场景-基础数据的录入(部门,用户),用批量导入方便快捷.最近项目需要用到批量导入,决定花点时间写套比较通用的Excel导入功能.经过考虑, ...

  10. prototype 原型

    在我刚学习javascript的时候对于原型的概念很模糊,现在也不是很懂,希望下面的文章对有相同问题的朋友有帮助,如果有误希望指正: prototype用于通常用于构造函数中,公用方法的继承上.构造函 ...