NOIP2015 提高组 子串
感觉是最长公共子序列模型的变式。
容易想到记 \(f[i][j][k]\) 表示 \(A\) 走到了第 \(i\) 位,\(B\) 匹配上了 \(1 \sim j\),目前分成了 \(k\) 段的方案数。
如果强制第 \(i\) 位必须匹配上的话,需要枚举位置 \(p\),满足 \(A[p] = B[j - 1]\)。这样的复杂度是 \(O(n^2m^2)\),无法通过本题。
我们采用类似最长公共子序列的方式,不必强制 \(i\) 必须匹配上,也可以直接从上一个状态继承过来。
具体来说,记 \(f[i][j][k][1/0]\) 表示 \(A\) 走到了第 \(i\) 位,\(B\) 匹配上了 \(1 \sim j\),目前分成了 \(k\) 段,\(a[i]\) 匹配 / 不匹配的方案数。
如果 \(a[i]\) 匹配上了,分段的话,上一位匹没匹配上无所谓,不分段的话,上一位也必须要匹配上,即:
\]
如果 \(a[i]\) 没匹配上,上一位匹没匹配上无所谓,即:
\]
答案就是 \(f[n][m][k][0] + f[n][m][k][1]\)。注意有上一位的继承,所以不用枚举谁匹配 \(b[m]\) 了。
时间复杂度 \(O(nm^2)\),而且跑不满,非常快。
算一下空间,\(128MB\) 存不下,把 \(i\) 维给滚掉就可以了。
(今天才发现原来 Luogu 不能 cin >> (a + 1),于是用了 scanf)
#include<bits/stdc++.h>
#define F(i,l,r) for(int i(l);i<=(r);++i)
#define G(i,r,l) for(int i(r);i>=(l);--i)
using namespace std;
using ll = long long;
const int mod = 1e9 + 7;
int f[2][205][205][2];
int n, m, s;
char a[1005], b[205];
signed main(){
scanf("%d %d %d %s %s", &n, &m, &s, a + 1, b + 1);
F(i, 1, n){
f[(i - 1) & 1][0][0][0] = 1;
F(j, 1, m) F(k, 1, s) f[i & 1][j][k][0] = f[i & 1][j][k][1] = 0;
F(j, 1, min(i, m)){
F(k, 1, min(j, s)){
f[i & 1][j][k][0] = (f[(i - 1) & 1][j][k][0] + f[(i - 1) & 1][j][k][1]) % mod;
if(a[i] == b[j])
f[i & 1][j][k][1] = ((f[(i - 1) & 1][j - 1][k][1]+ f[(i - 1) & 1][j - 1][k - 1][0]) % mod + f[(i - 1) & 1][j - 1][k - 1][1]) % mod;
}
}
}
printf("%d", (f[n & 1][m][s][0] + f[n & 1][m][s][1]) % mod);
return fflush(0), 0;
}
本题的关键在于打开思路,不必强制当前位必须匹配,一个小小的定义修改,足以影响复杂度。
NOIP2015 提高组 子串的更多相关文章
- [NOIP2015提高组]子串
题目:洛谷P2679.Vijos P1982.codevs4560.UOJ#149. 题目大意:有长度为n的A串和长度为m的B串.现在要从A串中取出k个互不重叠的子串,使它们按顺序相连后得到B串.问有 ...
- 刷题总结——子串(NOIP2015提高组)
题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...
- 【题解】NOIP2015提高组 复赛
[题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...
- [NOIP2015] 提高组 洛谷P2615 神奇的幻方
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- 洛谷-神奇的幻方-NOIP2015提高组复赛
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- 洛谷 P2678 & [NOIP2015提高组] 跳石头
题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...
- 【数据结构】运输计划 NOIP2015提高组D2T3
[数据结构]运输计划 NOIP2015提高组D2T3 >>>>题目 [题目描述] 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航 ...
- 【二分查找】 跳石头NOIP2015提高组 D2T1
[二分查找]跳石头NOIP2015提高组 D2T1 >>>>题目 [题目描述] 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石 ...
- noip2015 提高组 day1t1 神奇的幻方
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- NOIP2015 提高组] 运输计划
码农题啊兄弟们. 随便考虑二分一下,然后发现要取一条满足性质的边. 被所有大于\(mid\)的路径都覆盖,取了之后能把他们都弄到小于\(mid\) 那就树上差分再处理一下. 写了\(180h\),老年 ...
随机推荐
- NoSQL之事务和相关特性
NoSQL 简介 NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL". 在现代的计算系统上每天网络上都会产生庞大的数据量. 这些数据有很大一部分是由关 ...
- 12-es6类的方式封装折线图
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- React 高德地图 进京证 路线规划 问题小记
一.加载问题 用高德地图做了个进京证路线规划的功能,官网也是有 React 代码示例.但是吧,这个Demo有问题,地图是能加载成功,但是其他功能再用 map 这个变量肯定不行,果不其然是null,处理 ...
- 38k Star!颠覆传统BI,Metabase新一代智能数据分析工具
Metabase 是一个开源的商业智能(BI)工具,帮助用户轻松地从数据库中提取数据,并将其转化为易于理解的图表和仪表板.与传统的 BI 工具相比,Metabase 不需要用户具备编写 SQL 的能力 ...
- milvus 结果
milvus (2.3.3) 两个查询方法 collection.query(...) 和 collection.search(...) 的返回类型是不同的,用错了会说 attribute error ...
- springboot经验之sql注入、xss注入拦截(POST)
简介 sql注入.xss注入.cors攻击的简介以及解决方案,可以参考下面链接: https://blog.csdn.net/yhhyhhyhhyhh/article/details/84504487 ...
- .NET8 Blazor 从入门到精通:(二)组件
目录 Blazor 组件 基础 路由 参数 组件参数 路由参数 生命周期事件 状态更改 组件事件 Blazor 组件 基础 新建一个项目命名为 MyComponents ,项目模板的交互类型选 Aut ...
- 海康威视测速&闪速测速
海康威视64g 闪速128g
- macOS 查看网络接口信息
networksetup -listallhardwareports 执行结果: Hardware Port: Ethernet Adapter (en4) Device: en4 Ethernet ...
- python get 请求接口 忽略证书验证
import requests # 请求接口 import ssl context = ssl.create_default_context() context.check_hostname = Fa ...