NOIP2015 提高组 子串

感觉是最长公共子序列模型的变式。

容易想到记 \(f[i][j][k]\) 表示 \(A\) 走到了第 \(i\) 位,\(B\) 匹配上了 \(1 \sim j\),目前分成了 \(k\) 段的方案数。

如果强制第 \(i\) 位必须匹配上的话,需要枚举位置 \(p\),满足 \(A[p] = B[j - 1]\)。这样的复杂度是 \(O(n^2m^2)\),无法通过本题。

我们采用类似最长公共子序列的方式,不必强制 \(i\) 必须匹配上,也可以直接从上一个状态继承过来。

具体来说,记 \(f[i][j][k][1/0]\) 表示 \(A\) 走到了第 \(i\) 位,\(B\) 匹配上了 \(1 \sim j\),目前分成了 \(k\) 段,\(a[i]\) 匹配 / 不匹配的方案数。

如果 \(a[i]\) 匹配上了,分段的话,上一位匹没匹配上无所谓,不分段的话,上一位也必须要匹配上,即:

\[f[i][j][k][1] = f[i - 1][j - 1][k - 1][0] + f[i - 1][j - 1][k - 1][1] + f[i - 1][j - 1][k ][1]
\]

如果 \(a[i]\) 没匹配上,上一位匹没匹配上无所谓,即:

\[f[i][j][k][0] = f[i - 1][j][k][0] + f[i - 1][j][k][1]
\]

答案就是 \(f[n][m][k][0] + f[n][m][k][1]\)。注意有上一位的继承,所以不用枚举谁匹配 \(b[m]\) 了。

时间复杂度 \(O(nm^2)\),而且跑不满,非常快。

算一下空间,\(128MB\) 存不下,把 \(i\) 维给滚掉就可以了。

(今天才发现原来 Luogu 不能 cin >> (a + 1),于是用了 scanf

#include<bits/stdc++.h>
#define F(i,l,r) for(int i(l);i<=(r);++i)
#define G(i,r,l) for(int i(r);i>=(l);--i)
using namespace std;
using ll = long long;
const int mod = 1e9 + 7;
int f[2][205][205][2];
int n, m, s;
char a[1005], b[205];
signed main(){
scanf("%d %d %d %s %s", &n, &m, &s, a + 1, b + 1);
F(i, 1, n){
f[(i - 1) & 1][0][0][0] = 1;
F(j, 1, m) F(k, 1, s) f[i & 1][j][k][0] = f[i & 1][j][k][1] = 0;
F(j, 1, min(i, m)){
F(k, 1, min(j, s)){
f[i & 1][j][k][0] = (f[(i - 1) & 1][j][k][0] + f[(i - 1) & 1][j][k][1]) % mod;
if(a[i] == b[j])
f[i & 1][j][k][1] = ((f[(i - 1) & 1][j - 1][k][1]+ f[(i - 1) & 1][j - 1][k - 1][0]) % mod + f[(i - 1) & 1][j - 1][k - 1][1]) % mod;
}
}
}
printf("%d", (f[n & 1][m][s][0] + f[n & 1][m][s][1]) % mod);
return fflush(0), 0;
}

本题的关键在于打开思路,不必强制当前位必须匹配,一个小小的定义修改,足以影响复杂度。

NOIP2015 提高组 子串的更多相关文章

  1. [NOIP2015提高组]子串

    题目:洛谷P2679.Vijos P1982.codevs4560.UOJ#149. 题目大意:有长度为n的A串和长度为m的B串.现在要从A串中取出k个互不重叠的子串,使它们按顺序相连后得到B串.问有 ...

  2. 刷题总结——子串(NOIP2015提高组)

    题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...

  3. 【题解】NOIP2015提高组 复赛

    [题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...

  4. [NOIP2015] 提高组 洛谷P2615 神奇的幻方

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  5. 洛谷-神奇的幻方-NOIP2015提高组复赛

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  6. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  7. 【数据结构】运输计划 NOIP2015提高组D2T3

    [数据结构]运输计划 NOIP2015提高组D2T3 >>>>题目 [题目描述] 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航 ...

  8. 【二分查找】 跳石头NOIP2015提高组 D2T1

    [二分查找]跳石头NOIP2015提高组 D2T1 >>>>题目 [题目描述] 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石 ...

  9. noip2015 提高组 day1t1 神奇的幻方

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  10. NOIP2015 提高组] 运输计划

    码农题啊兄弟们. 随便考虑二分一下,然后发现要取一条满足性质的边. 被所有大于\(mid\)的路径都覆盖,取了之后能把他们都弄到小于\(mid\) 那就树上差分再处理一下. 写了\(180h\),老年 ...

随机推荐

  1. 再升级!MoneyPrinterPlus集成GPT_SoVITS

    最近有很多优秀的语音合成TTS工具,目前MoneyPrinterPlus已经集成了ChatTTS和fasterWhisper.应朋友们的要求,最近MoneyPrinterPlus也集成了GPT_SoV ...

  2. 别再被坑了! JavaScript类型检测的最佳实践

    别再被坑了! JavaScript类型检测的最佳实践 在 JavaScript 中,我们经常需要判断一个变量的类型.这个需求在编程中非常常见,因为不同类型的数据会影响到我们的代码逻辑. JavaScr ...

  3. kafka 运维

    查看kafka topic列表 #集群需要先执行unset JMX_PORT ./kafka-topics.sh --zookeeper gitee-zookeeper:2181 --list 查看t ...

  4. PySide6/PyQt开发经验总结(2) - 设置快捷键

    Qt设置快捷键 本文仅供本人知识总结使用,所以内容会比较浅显,不喜勿喷. 目录 Qt设置快捷键 一.需要的类 QShortcut 函数: 二.设置快捷键 官方文档原文翻译: 我的理解: 一.需要的类 ...

  5. CSS学习(一)CSS和文档

    应用样式的三种方式 外部样式表(link.@import) 嵌入式样式表(<style></style>) 行内样式 (html元素的属性为style的值作为样式) CSS的空 ...

  6. failed to copy: httpReadSeeker: failed open: unexpected status code xxx 403

    ack上pull镜像的时候,报的错 非运行脚本的问题,由负责ack相关设定的人员调整即可

  7. Coursera, Big Data 5, Graph Analytics for Big Data, Week 5

    Computing Platforms for Graph Analytics programming models for Graphs Giraph and GraphX 其中讲 GraphX 的 ...

  8. Email 关于 POP3 IMAP SMTP office365 Outlook Gmail G-Suit shared mailbox小小理解

    Outlook 是微软的一个 email 软件, 管理 email 的 UI. Gmail 是 google 的 office365 是一个配套, 里面有 email, one drive, exce ...

  9. Maven高级——私服(Nexus)

    私服 私服是一台独立的服务器,用于解决团队内部的资源共享与资源同步问题 Nexus Sonatype公司的一款maven私服产品 下载地址(需要魔法):nexus-3.49.0-02-win64.zi ...

  10. Java如何解决同时出库入库订单号自动获取问题

    在Java中处理同时出库和入库的订单号自动获取问题,通常涉及到多线程环境下的并发控制.为了确保订单号的唯一性和连续性,我们可以使用多种策略,如数据库的自增ID.分布式锁.或者利用Java的并发工具类如 ...