Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
2 seconds
256 megabytes
standard input
standard output
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9
题意:给你n个点,m条边;
第i条为必选边,求最小的生成树;
思路:先建好一颗最小生成树,如果边在生成树上,输出最小的即可;
对于不在树上的如何求解:
原来建好的一棵树,再加入一条边,会使得形成一个环,去查找原来最小生成树中u到v最大的边权,最小生成树的权值减去最大的边权+当前的边权即使答案;
无更新的区间最大值,可以用倍增的写法;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=; ///数组大小
struct edge
{
int v,next;
} edge[N<<];
int head[N<<],edg,id,n;
/// 树链剖分 int fa[N],dep[N],son[N],siz[N]; // fa父亲,dep深度,son重儿子,siz以该点为子树的节点个数
int ran[N],top[N],tid[N],num[N]; // tid表示边的标号,top通过重边可以到达最上面的点,ran表示标记tid
void init()
{
memset(son,-,sizeof(son));
memset(head,-,sizeof(head));
edg=;
id=;
} void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
} void dfs1(int u,int fath,int deep)
{
fa[u]=fath;
siz[u]=;
dep[u]=deep;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fath)continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(son[u]==-||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
tid[u]=++id;
top[u]=tp;
ran[tid[u]]=u;
if(son[u]==-)return;
dfs2(son[u],tp);
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fa[u])continue;
if(v!=son[u])
dfs2(v,v);
}
} struct SGT
{
int maxx[N<<];
void pushup(int pos)
{
maxx[pos]=max(maxx[pos<<],maxx[pos<<|]);
}
void build(int l,int r,int pos)
{
if(l==r)
{
maxx[pos]=num[ran[l]];
return;
}
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
int query(int L,int R,int l,int r,int pos)
{
//cout<<L<<" "<<R<<" "<<l<<" "<<r<<endl;
if(L<=l&&r<=R)return maxx[pos];
int mid=(l+r)>>;
int ans=;
if(L<=mid)ans=max(ans,query(L,R,l,mid,pos<<));
if(R>mid) ans=max(ans,query(L,R,mid+,r,pos<<|));
return ans;
}
}tree; int up(int l,int r)
{
int ans=;
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r); ans=max(ans,tree.query(tid[top[l]],tid[l],,n,));
l=fa[top[l]];
} if(dep[l]<dep[r])swap(l,r);
if(l==r)return ans;
ans=max(ans,tree.query(tid[son[r]],tid[l],,n,));
return ans;
}
/// 克鲁斯卡尔
struct is
{
int u,v,w,pos;
operator <(const is &x)const
{
return w<x.w;
}
}a[N];
int fafa[N],ans[N];
int Find(int x)
{
return x==fafa[x]?x:fafa[x]=Find(fafa[x]);
}
ll out[N];
int main()
{
init();
int m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w),a[i].pos=i;
sort(a+,a++m);
ll minn=;
for(int i=;i<=n;i++)
fafa[i]=i;
for(int i=;i<=m;i++)
{
int x=Find(a[i].u);
int y=Find(a[i].v);
if(x!=y)
{
add(a[i].u,a[i].v);
add(a[i].v,a[i].u);
fafa[x]=y;
minn+=a[i].w;
ans[i]=;
}
}
dfs1(,-,);
dfs2(,);
for(int i=;i<=m;i++)
{
if(ans[i])
{
if(fa[a[i].u]==a[i].v)
num[a[i].u]=a[i].w;
else
num[a[i].v]=a[i].w;
}
}
tree.build(,n,);
for(int i=;i<=m;i++)
{
if(ans[i])out[a[i].pos]=minn;
else
{
int x=up(a[i].u,a[i].v);
out[a[i].pos]=minn-x+a[i].w;
}
}
for(int i=;i<=m;i++)
printf("%lld\n",out[i]);
return ;
}
Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树的更多相关文章
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Water Tree CodeForces 343D 树链剖分+线段树
Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- Python中*args和**kwargs 的简单使用
# 在函数定义中使用*args和kwargs传递可变长参数. *args用作传递非命名键值可变长参数列表(位置参数); kwargs用作传递键值可变长参数列表# *args表示任何多个无名参数,它是一 ...
- Hadoop学习笔记之五:HDFS功能逻辑(1)
Block Report DataNode会周期性(默认1小时)将自身节点全部block信息发送给NameNode,以让NameNode正确确维护block信息. 在Block Report的数据源D ...
- CXF+Spring+Hibernate实现RESTful webservice服务端实例
1.RESTful API接口定义 /* * Copyright 2016-2017 WitPool.org All Rights Reserved. * * You may not use this ...
- 求N!的二进制表示中最低位1的位置。(编程之美)
要求的是N!的二进制表示中最低位1的位置.给定一个整数N,求N!二进制表示的最低位1在第几位?例如:给定N = 3,N!= 6,那么N!的二进制表示(1 010)的最低位1在第二位. 为了得到更好的解 ...
- Kattis之旅——Prime Path
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that ...
- pat 团体赛练习题集 L2-006. 树的遍历
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(<=30),是二叉树中结点的个数.第二行给出其后序遍历序 ...
- Spring Boot 2 (八):Spring Boot 集成 Memcached
Spring Boot 2 (八):Spring Boot 集成 Memcached 一.Memcached 介绍 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数 ...
- Linux 基础知识选择/填空
选择题 1. 返回调用进程的进程标识号的系统函数是________. A. getpid B. getpgrp C. getppid D. setpid ##A 2. 关于文件系统的安装和卸载,下面描 ...
- python简说(九)函数
一.列表生成式 s =[1,2,3,4,5,6,7,8]for i in s: print(i+1)res = [ i+1 for i in s]res = [str(i) for i in s] 二 ...
- 20145208 蔡野 《网络对抗》Exp6 信息搜集与漏洞扫描
20145208 蔡野 <网络对抗>Exp6 信息搜集与漏洞扫描 本实践的目标是掌握信息搜集的最基础技能.具体有(1)各种搜索技巧的应用(2)DNS IP注册信息的查询 (3)基本的扫描技 ...