《机器学习实战》之k-近邻算法(手写识别系统)
这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距离来得到最接近的答案。
import os
import operator
from numpy import * def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #统一矩阵,实现加减
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #进行累加,axis=0是按列,axis=1是按行
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort() #按升序进行排序,返回原下标
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #get是字典中的方法,前面是要获得的值,后面是若该值不存在时的默认值
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def img2vector(filename):
f = open(filename)
returnVect = zeros((1,1024))
for i in range(32):
line = f.readline()
for j in range(32):
returnVect[0,i*32+j] = int(line[j])
return returnVect def handwritingClassTest():
fileList = os.listdir('trainingDigits')
m = len(fileList)
traingMat = zeros((m, 1024))
hwlabels = []
for i in range(m):
fileName = fileList[i]
prefix = fileName.split('.')[0]
number = int(prefix.split('_')[0])
hwlabels.append(number)
traingMat[i,:] = img2vector('trainingDigits/%s' %fileName)
testFileList = os.listdir('testDigits')
m = len(testFileList)
errorNum = 0.0
for i in range(m):
testFileName = testFileList[i]
prefix = testFileList[i].split('.')[0]
realNumber = int(prefix.split('_')[0])
testMat = img2vector('testDigits/%s' %testFileName)
testResult = classify0(testMat, traingMat, hwlabels, 3)
if testResult != realNumber:
errorNum += 1
print('The classifier came back with: %d, the real answer is: %d' %(testResult, realNumber))
print('错误率为%f' %(errorNum/float(m))) if __name__ == '__main__':
handwritingClassTest()

《机器学习实战》之k-近邻算法(手写识别系统)的更多相关文章
- 《机器学习实战》-k近邻算法
目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- k-近邻算法-手写识别系统
手写数字是32x32的黑白图像.为了能使用KNN分类器,我们需要把32x32的二进制图像转换为1x1024 1. 将图像转化为向量 from numpy import * # 导入科学计算包numpy ...
- 《机器学习实战》——K近邻算法
三要素:距离度量.k值选择.分类决策 原理: (1) 输入点A,输入已知分类的数据集data (2) 求A与数据集中每个点的距离,归一化,并排序,选择距离最近的前K个点 (3) K个点进行投票,票数最 ...
- 机器学习实战python3 K近邻(KNN)算法实现
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python ...
- 第三篇:基于K-近邻分类算法的手写识别系统
前言 本文将继续讲解K-近邻算法的项目实例 - 手写识别系统. 该系统在获取用户的手写输入后,判断用户写的是什么. 为了突出核心,简化细节,本示例系统中的输入为32x32矩阵,分类结果也均为数字.但对 ...
- 机器学习实战一:kNN手写识别系统
实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*3 ...
- 机器学习随笔01 - k近邻算法
算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
随机推荐
- 20165305 苏振龙《Java程序设计》第四周学习总结
第五章 继承: 面向对象中,为避免多个类间重复定义共同行为.(简单说就是将相同的程序代码提升为父类.) 特点: 这里接触到了新的关键词,extends,在java语言中用estends来继承父类的行为 ...
- JAVA基础1---Object类解析
1.Object简介 众所周知,Object类是Java所有类的万类之源,所有Java类都是继承之Object类,而默认就直接忽略了extends Object这段代码. 2.Object类的源码 话 ...
- Linux Centos下查看cpu、磁盘、内存使用情况,关闭MySQL日志
Linux Centos下查看cpu.磁盘.内存使用情况,关闭MySQL日志 lsblk 查看分区和磁盘df -h 查看空间使用情况fdisk -l 分区工具查看分区信息cfdisk /dev/sda ...
- 给本体ONT技术社区的第一封公开信-涉及到不少区块链技术知识
给本体ONT技术社区的第一封公开信-涉及到不少区块链技术知识 共识是区块链的核心机制,在一系列的区块链的发展历史当中,PoW/PoS/BFT等系列的共识算法都在各自的应用场景发挥了不同作用.在本体的第 ...
- JDBC-day02
JDBC:数据库连接 java database connectivity ###properties 属性对象,用于读取*.properties属性配置文件中的数据 -为什么使用:之前写法是把数 ...
- Step1:SQL Server 复制介绍
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 前言(Introduction) 复制逻辑结构图(Construction) 系列文章索引(Catalog) 总结&am ...
- Python For Android (P4a):添加权限(Permissions)
from flutter study: <uses-permission android:name="android.permission.INTERNET"/>< ...
- Django之404、500、400错误处理
要自定义处理url请求错误需要进行三步操作:主要错误有: 404错误:page not found视图 500错误:server error视图 400错误:bad request视图 以404错误为 ...
- ReentrantLock$Sync.tryRelease java.lang.IllegalMonitorStateException
早上一来,例行性的看主要环境的运行情况,发现有个环境中有如下异常: 17-02-28 08:13:37.368 ERROR pool-2-thread-65 com.ld.net.spider.Spi ...
- .net 高并发 多消费者模式处理订单
1.数据直接往rabbitmq抛或者判断redis里面是否有订单2.多消费者模式往数据库刷单3.判断redis是否有这个订单了,没有的话插入订单,存在了的话,不插入订单4.检索出订单,然后往队列分发到 ...