这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距离来得到最接近的答案。

 import os
import operator
from numpy import * def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #统一矩阵,实现加减
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #进行累加,axis=0是按列,axis=1是按行
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort() #按升序进行排序,返回原下标
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #get是字典中的方法,前面是要获得的值,后面是若该值不存在时的默认值
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def img2vector(filename):
f = open(filename)
returnVect = zeros((1,1024))
for i in range(32):
line = f.readline()
for j in range(32):
returnVect[0,i*32+j] = int(line[j])
return returnVect def handwritingClassTest():
fileList = os.listdir('trainingDigits')
m = len(fileList)
traingMat = zeros((m, 1024))
hwlabels = []
for i in range(m):
fileName = fileList[i]
prefix = fileName.split('.')[0]
number = int(prefix.split('_')[0])
hwlabels.append(number)
traingMat[i,:] = img2vector('trainingDigits/%s' %fileName)
testFileList = os.listdir('testDigits')
m = len(testFileList)
errorNum = 0.0
for i in range(m):
testFileName = testFileList[i]
prefix = testFileList[i].split('.')[0]
realNumber = int(prefix.split('_')[0])
testMat = img2vector('testDigits/%s' %testFileName)
testResult = classify0(testMat, traingMat, hwlabels, 3)
if testResult != realNumber:
errorNum += 1
print('The classifier came back with: %d, the real answer is: %d' %(testResult, realNumber))
print('错误率为%f' %(errorNum/float(m))) if __name__ == '__main__':
handwritingClassTest()

《机器学习实战》之k-近邻算法(手写识别系统)的更多相关文章

  1. 《机器学习实战》-k近邻算法

    目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python ...

  2. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  3. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  4. k-近邻算法-手写识别系统

    手写数字是32x32的黑白图像.为了能使用KNN分类器,我们需要把32x32的二进制图像转换为1x1024 1. 将图像转化为向量 from numpy import * # 导入科学计算包numpy ...

  5. 《机器学习实战》——K近邻算法

    三要素:距离度量.k值选择.分类决策 原理: (1) 输入点A,输入已知分类的数据集data (2) 求A与数据集中每个点的距离,归一化,并排序,选择距离最近的前K个点 (3) K个点进行投票,票数最 ...

  6. 机器学习实战python3 K近邻(KNN)算法实现

    台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python ...

  7. 第三篇:基于K-近邻分类算法的手写识别系统

    前言 本文将继续讲解K-近邻算法的项目实例 - 手写识别系统. 该系统在获取用户的手写输入后,判断用户写的是什么. 为了突出核心,简化细节,本示例系统中的输入为32x32矩阵,分类结果也均为数字.但对 ...

  8. 机器学习实战一:kNN手写识别系统

    实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*3 ...

  9. 机器学习随笔01 - k近邻算法

    算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...

  10. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

随机推荐

  1. 【javascript】内存泄露及其解决办法

    1.内存泄露:一般由于开发者使用不当导致不用的内存没有被操作系统或者空闲内存池回收释放. 2.造成内存泄露的常见原因: 1) 意外的全局变量引起的内存泄露 2)闭包引起的内存泄露 闭包可以维持函数内局 ...

  2. JustOj 1936: 小明A+B

    题目描述 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能够进行100以内的非负整数的加法计算. 对于大于等于100的整数, 小明仅保留该数的最后两位进行计算, 如果计算结果大于等于 ...

  3. echo 命令详解

    echo命令用于在shell中打印shell变量的值,或者直接输出指定的字符串. 选项 -e:激活转义字符. 使用-e选项时,若字符串中出现以下字符,则特别加以处理,而不会将它当成一般文字输出: \a ...

  4. 怎样从外网访问内网微服务Microservices?

    本地部署了一个微服务,只能在局域网内访问,怎样从外网也能访问到本地的微服务呢?本文将介绍具体的实现步骤. 准备工作 部署并启动微服务程序 默认部署的微服务端口是8088. 实现步骤 下载并解压hole ...

  5. 初识wxPython

    wxPython是包装C++编写的wxWidgets跨平台的GUI组件 安装wxPython pip install wxpython import wx def load(event): file ...

  6. bzoj2595 / P4294 [WC2008]游览计划

    P4294 [WC2008]游览计划 斯坦纳树 斯坦纳树,是一种神奇的树.它支持在一个连通图上求包含若干个选定点的最小生成树. 前置算法:spfa+状压dp+dfs(大雾) 我们设$f[o][P]$为 ...

  7. 哪些个在 Sublime Text 下,"任性的" 好插件!

    我在sublime里面安装了以下有利于项目开发高效的插件: 1:SVN             源代码版本控制 2:LiveReload   浏览器实时刷新 3:jsMinifier     压缩 j ...

  8. Python 使用 face_recognition 人脸识别

    Python 使用 face_recognition 人脸识别 官方说明:https://face-recognition.readthedocs.io/en/latest/readme.html 人 ...

  9. k8s tensorflow

    Online learning github source Kubeflow实战系列 Prepare 了解ksonnet初探Google之Kubeflow (采用的是0.8.0)install dep ...

  10. 2018年省赛蓝桥杯JavaB组

    第一题:第几天 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数,不要填写任何多余内容. 解法: 2000年为闰年,2月29天 31 ...