官网地址

https://dev.mysql.com/doc/refman/5.5/en/innodb-transaction-isolation-levels.html

这里主要是说事务隔离级别,以及对锁的影响

Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results when multiple transactions are making changes and performing queries at the same time.

InnoDB offers all four transaction isolation levels described by the SQL:1992 standard: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. The default isolation level for InnoDB is REPEATABLE READ.

A user can change the isolation level for a single session or for all subsequent connections with the SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --transaction-isolation option on the command line or in an option file. For detailed information about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.

InnoDB supports each of the transaction isolation levels described here using different locking strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level, for operations on crucial data where ACID compliance is important. Or you can relax the consistency rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where precise consistency and repeatable results are less important than minimizing the amount of overhead for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.

The following list describes how MySQL supports the different transaction levels. The list goes from the most commonly used level to the least used.

  • REPEATABLE READ

    This is the default isolation level for InnoDB. Consistent reads within the same transaction read the snapshot established by the first read. This means that if you issue several plain (nonlocking) SELECT statements within the same transaction, these SELECT statements are consistent also with respect to each other. See Section 14.8.2.3, “Consistent Nonlocking Reads”.

    For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition.

    • For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it.

    • For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions by other sessions into the gaps covered by the range. For information about gap locks and next-key locks, see Section 14.8.1, “InnoDB Locking”.

  • READ COMMITTED

    Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For information about consistent reads, see Section 14.8.2.3, “Consistent Nonlocking Reads”.

    For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits the free insertion of new records next to locked records. Gap locking is only used for foreign-key constraint checking and duplicate-key checking.

    Because gap locking is disabled, phantom problems may occur, as other sessions can insert new rows into the gaps. For information about phantoms, see Section 14.8.4, “Phantom Rows”.

    If you use READ COMMITTED, you must use row-based binary logging.

    Using READ COMMITTED has additional effects:

    • For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes. Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition. This greatly reduces the probability of deadlocks, but they can still happen.

    • For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read, returning the latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again and this time InnoDB either locks it or waits for a lock on it.

    Consider the following example, beginning with this table:

    CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
    INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
    COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for record locking (see Section 14.11.2.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following those of the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then determines whether to modify it. If InnoDB does not modify the row, it releases the lock. Otherwise, InnoDB retains the lock until the end of the transaction. This affects transaction processing as follows.

When using the default REPEATABLE READ isolation level, the first UPDATE acquires x-locks and does not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

--comment: REPEATABLE-READ级别的情况下,由于所有记录没有索引,扫描所有记录的时候不管是否匹配条件,这些记录都被锁上

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If READ COMMITTED is used instead, the first UPDATE acquires x-locks and releases those for rows that it does not modify:

--comment: 而在READ-COMMITTED级别的情况,同样会扫描所有记录并对所有记录上锁,但会对比匹配的记录解锁

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version of each row to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock
  • The effects of using the READ COMMITTED isolation level are the same as enabling the innodb_locks_unsafe_for_binlog configuration option, with these exceptions:

    • Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas the isolation level can be set globally for all sessions, or individually per session.

    • innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level can be set at startup or changed at runtime.

    READ COMMITTED therefore offers finer and more flexible control than innodb_locks_unsafe_for_binlog.

  • READ UNCOMMITTED

    SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row might be used. Thus, using this isolation level, such reads are not consistent. This is also called a “dirty read.” Otherwise, this isolation level works like READ COMMITTED.

  • SERIALIZABLE

    This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled, the SELECT is its own transaction. It therefore is known to be read only and can be serialized if performed as a consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to block if other transactions have modified the selected rows, disable autocommit.)

mysql 锁2的更多相关文章

  1. mysql锁

    锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数 ...

  2. Mysql锁初步

    存储引擎 要了解mysql的锁,就要先从存储引擎说起. 常用存储引擎列表如下图所示: 最常使用的两种存储引擎: Myisam是Mysql的默认存储引擎.当create创建新表时,未指定新表的存储引擎时 ...

  3. mysql锁表机制及相关优化

    (该文章为方便自己查阅,也希望对大家有所帮助,转载于互联网) 1. 锁机制 当前MySQL支持 ISAM, MyISAM, MEMORY (HEAP) 类型表的表级锁,BDB 表支持页级锁,InnoD ...

  4. MySQL锁系列3 MDL锁

    http://www.cnblogs.com/xpchild/p/3790139.html   MySQL为了保护数据字典元数据,使用了metadata lock,即MDL锁,保证在并发的情况下,结构 ...

  5. 01 MySQL锁概述

    锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O 等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有 ...

  6. Mysql锁机制介绍

    Mysql锁机制介绍 一.概况MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制.比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking ...

  7. MySQL锁等待分析【2】

    MySQL锁等待分析[1]中对锁等待的分析是一步一步来的.虽然最后是分析出来了,可是用时是比较长的:理清各个表之间的关系后,得到如下SQL语句,方便以后使用 select block_trx.trx_ ...

  8. MySQL锁与MVCC

    --MySQL锁与MVCC --------------------2014/06/29 myisam表锁比较简单,这里主要讨论一下innodb的锁相关问题. innodb相比oracle锁机制简单许 ...

  9. MySQL锁总结

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/78 MySQL 锁基础 参考了何登成老师文章的结构MySQL 加 ...

  10. Mysql锁机制--并发事务带来的更新丢失问题

    Mysql 系列文章主页 =============== 刚开始学习 Mysql 锁的时候,觉得 Mysql 使用的是行锁,再加上其默认的可重复读的隔离级别,那就应该能够自动解决并发事务更新的问题.可 ...

随机推荐

  1. 简单了解version control

    1.什么是版本控制: 版本控制是指对软件开发过程中各种程序代码.配置文件及说明文档等文件变更的管理,是软件管理的核心思想之一 2.版本控制简述 版本控制最主要的功能就是追踪文件的变更.它将什么时候.什 ...

  2. SQL Server 向数据库中创建表并添加数据

    创建表,展开数据库中新建的数据库,下面有一个选项-表.在该选项上右键就可以选择-新建-表. 然后出现的界面上是需要自己填写列列名.数据类型和选择是否允许空值. 其中数据类型我是参考: http://w ...

  3. sourcetree删除github远程仓库文件

    sourcetree删除远程仓库的master分支文件步骤 第一步:删除本地远程仓库分支的所需要文件或者文件夹(本地和远程仓库同步) 第二步:回到sourcetree提交,推送 第三步:刷新远程仓库

  4. vue全家桶+Koa2开发笔记(5)--nuxt

    1. nuxt项目初始化报错 下面是使用 koa 模板方法初始化一个项目,使用该方法需要将 nuxt 的版本降至1.4.2: 官方 https://zh.nuxtjs.org/guide/instal ...

  5. 配置文件schema约束

    解释:https://blog.csdn.net/zh15732621679/article/details/79074380 操作:https://blog.csdn.net/lhg_55/arti ...

  6. mongodb 通过mongodump来备份Sharded Cluste分片集群

    1,mongodb所有组件官方文档地址:https://docs.mongodb.com/manual/reference/command/,所有的基础组件都在里面,包括备份恢复的mongodump. ...

  7. madlib 集成 hasura graphql-engine 试用

    madlib 可以让我们直接在sql 中进行机器学习,集成了强大的sql 能力,以及分析能力,后边会尝试 集成graphql engine ,让功能更强大 docker 镜像准备 使用了一个别人的写好 ...

  8. 我发起了一个用 .Net 编写的 源代码管理工具 开源项目 SourceKit

    发起这个 项目 的 起因 是 GitHub . Github 的 使用技能 俨然已经成了 一项新技术 , 这不是 工具 的 本意 . 我用过的 源代码 管理工具 不多,  SVN 我觉得不错 . 常用 ...

  9. What is the difference between concurrency, parallelism and asynchronous methods?

    Ref: http://stackoverflow.com/questions/4844637/what-is-the-difference-between-concurrency-paralleli ...

  10. MD5 SHA1 SHA256 SHA512 SHA1WithRSA 的区别

    MD5 SHA1 SHA256 SHA512 这4种本质都是摘要函数,不通在于长度  MD5 是 128 位,SHA1  是 160 位 ,SHA256  是 256 位,SHA512 是512 位. ...