致敬百度百科qwq

本文摘自百度百科,只是对于信竞范围内的知识做一个小总结qwq,持续更新ing···

满射:

如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。

满射或盖射(英语:surjection、onto),或称满射函数或映成函数,一个函数 为满射,则对于任意的陪域Y中的元素 y,在函数的定义域X中存在一点 x使得f(x)=y。换句话说, f是满射时,它的值域f(X)与陪域Y相等,或者,等价地,如果每一个陪域中的元素  其原像不等于空集合。

单射:

设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的单射。在数学里,单射函数为一函数,其将不同的引数连接至不同的值上。更精确地说,函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x) = y。另一种说法为,f为单射,当f(a) = f(b),则a = b(若a≠b,则f(a)≠f(b)),其中a、b属于定义域。单射在某些书中也叫入射,可理解成“原不同则像不同”。
 
双射:
既是单射又是满射映射称为双射,亦称“一一映射”。
双射(Bijection)的原理是一组关系,在判别某一种想法在应用能否双向的找到某一唯一对应的事物,理论上通常要判断这种想法是否满足双射的关系。因为具体的实施这一想法的途径我们是并不知道的,所以需要抽象出他们的关系,找到这个双射,如果找不到,并且验证这个双射不存在,那么想法是不可能实现的。
 
康托展开:
康托展开是一个全排列到一个自然数双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。

康托展开运算:

其中,  为整数,并且

  。

表示原数的第i位在当前未出现的元素中是排在第几个

康托展开的逆运算:
既然康托展开是一个双射,那么一定可以通过康托展开值求出原排列,即可以求出n的全排列中第x大排列。
如n=5,x=96时:
首先用96-1得到95,说明x之前有95个排列.(将此数本身减去1)用95去除4! 得到3余23,说明有3个数比第1位小,所以第一位是4.用23去除3! 得到3余5,说明有3个数比第2位小,所以是4,但是4已出现过,因此是5.用5去除2!得到2余1,类似地,这一位是3.用1去除1!得到1余0,这一位是2.最后一位只能是1.所以这个数是45321。
按以上方法可以得出通用的算法。
 
莫比乌斯反演:

  

 是定义在正整数集合上的两个函数,定义如下。
.
 
 
                                  
 
  

一些数学上的概念理解(持续更新qwq)的更多相关文章

  1. Java基础面试题(史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  2. JVM面试题(史上最强、持续更新、吐血推荐)

    文章很长而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三部 ...

  3. SpringBoot面试题 (史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  4. 消息队列面试题、RabbitMQ面试题、Kafka面试题、RocketMQ面试题 (史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  5. Linux面试题(史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  6. Netty 面试题 (史上最全、持续更新)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  7. Java算法面试题(史上最强、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  8. 关于macOS上常用操作命令(持续更新)

    1.mac上显示/隐藏Finder中的隐藏文件: 显示隐藏文件:在终端中输代码“defaults write com.apple.finder AppleShowAllFiles -boolean t ...

  9. JUC并发包与容器类 - 面试题(一网打净,持续更新)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

随机推荐

  1. mysql 案例 ~ 分析执行完的大事务

    一 简介:今天咱们来聊聊如何定位以及执行完的大事务 二 目的:通过分析binlog脚本来定位执行的大事务 三 分析脚本 mysqlbinlog --base64-output=decode-rows ...

  2. weblogic中部署SSH项目遇到的坑

    总结将SSH项目部署到weblogic遇到的坑.项目中是SSH,另外还用到了webservice.quartz等框架.在tomcat部署是可以的,现在总结部署到weblogic遇到的坑. 在这里说一下 ...

  3. Spring+Struts+Mybatis+Shiro整合配置

    Jar包

  4. 【转】Linux中常见问题(磁盘 定时任务)

    [转]Linux中常见问题(磁盘 定时任务) 第1章 linux无法上网 1)     第一步,先ping域名. ping www.baidu.com 2)再ping一个公网ip , ping 223 ...

  5. Anaconda3配置环境变量

    Anaconda3配置环境变量 有时候在win10安装好Anaconda3后,使用conda命令时依然会出现: C:\Users\dell\PycharmProjects\pytorch>con ...

  6. Reverse Words in a String I & Reverse Words in a String II

    Reverse Words in a String I Given an input string, reverse the string word by word. For example,Give ...

  7. Django 自定义过滤器和模板标签

    前提:自定义模板标签和过滤器必须位于Django的某个应用中,这个应用可以包含一个templatetags目录, 和models.py views.py 处于同一级目录.若这个templatetags ...

  8. git获取内核源码的方法

    [转]http://www.360doc.com/content/17/0410/16/23107068_644444795.shtml 1. 前言 本文主要讲述ubuntu下通过git下载linux ...

  9. openssl版本升级操作记录【转】

    需要部署nginx的https环境,之前是yum安装的openssl,版本比较低,如下:   [root@nginx ~]# yum install -y pcre pcre-devel openss ...

  10. CentOS 6.5环境下使用HAProxy+apache实现web服务的动静分离

    HAProxy提供高可用性.负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费.快速并且可靠的一种解决方案.HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持 ...