基于CRF序列标注的中文依存句法分析器的Java实现
这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法。相较于《最大熵依存句法分析器的实现》,分析速度翻了一倍,达到了1262.8655 sent/s
开源项目
本文代码已集成到HanLP中开源项目中,最新hanlp1.7版本已经发布
CRF简介
CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题。在生产中经常使用的训练工具是CRF++,关于CRF++的使用以及模型格式请参阅《CRF++模型格式说明》。
CRF训练
语料库
与《最大熵依存句法分析器的实现》相同,采用清华大学语义依存网络语料的20000句作为训练集。
预处理
依存关系事实上由三个特征构成——起点、终点、关系名称。在本CRF模型中暂时忽略掉关系名称(在下文可以利用其它模型补全)。
根据依存文法理论, 我们可以知道决定两个词之间的依存关系主要有二个因素: 方向和距离。因此我们将类别标签定义为具有如下的形式:
[ + |- ] dPOS
其中, [ + | – ]表示方向, + 表示支配词在句中的位置出现在从属词的后面, – 表示支配词出现在从属词的前面; POS表示支配词具有的词性类别; d表示距离。
比如原树库:
转换后:
特征模板
训练参数
1.crf_learn -f 3 -c 4.0 -p 3 template.txt train.txt model -t
我的试验条件(机器性能)有限,每迭代一次要花5分钟,最后只能设定最大迭代次数为100。经过痛苦的迭代,得到了一个效果非常有限的模型,其serr高达50%,暂时只做算法测试用。
解码
标准的维特比算法假定所有标签都是合法的,但是在本CRF模型中,标签还受到句子的约束。比如最后一个词的标签不可能是+nPos,必须是负数,而且任何词的[+/-]nPos都得保证后面(或前面,当符号为负的时候)有n个词语的标签是Pos。所以我覆写了CRF的维特比tag算法,代码如下:
注意上面的
1.if (!isLegal(j, i, table)) continue;
保证了标签的合法性。
这一步的结果:
后续处理
有了依存的对象,还需要知道这条依存关系到底是哪种具体的名称。我从树库中统计了两个词的词与词性两两组合出现概率,姑且称其为2gram模型,用此模型接受依存边两端的词语,输出其最可能的关系名称。
最终结果
转换为CoNLL格式输出:
基于CRF序列标注的中文依存句法分析器的Java实现的更多相关文章
- NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P8 -P11 CIPS2016> 中文信息处理报告下载链接:http://cips-uplo ...
- 转:NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)
NLP+句法结构(三)︱中文句法结构(CIPS2016.依存句法.文法)转自:https://www.cnblogs.com/maohai/p/6453389.html 摘录自:CIPS2016 中文 ...
- HanLP《自然语言处理入门》笔记--5.感知机模型与序列标注
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 5. 感知机分类与序列标注 第4章我们利用隐马尔可夫模型实现了第一个基于序列标注的 ...
- 基于双向BiLstm神经网络的中文分词详解及源码
基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...
- pyhanlp 两种依存句法分类器
依存句法分析器 在HanLP中一共有两种句法分析器 ·依存句法分析 (1)基于神经网络的高性能依存句法分析器 (2)MaxEnt依存句法分析 基于神经网络的高性能依存句法分析器 HanLP中的基于神经 ...
- DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...
- 基于CRF的中文分词
http://biancheng.dnbcw.info/java/341268.html CRF简介 Conditional Random Field:条件随机场,一种机器学习技术(模型) CRF由J ...
- 序列标注(HMM/CRF)
目录 简介 隐马尔可夫模型(HMM) 条件随机场(CRF) 马尔可夫随机场 条件随机场 条件随机场的特征函数 CRF与HMM的对比 维特比算法(Viterbi) 简介 序列标注(Sequence Ta ...
- Bi-LSTM+CRF在文本序列标注中的应用
传统 CRF 中的输入 X 向量一般是 word 的 one-hot 形式,前面提到这种形式的输入损失了很多词语的语义信息.有了词嵌入方法之后,词向量形式的词表征一般效果比 one-hot 表示的特征 ...
随机推荐
- python之pandas用法大全
python之pandas用法大全 更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论 本文讲解了python的pandas基本用法,大家可以参考下 一.生成数据表1.首先导入 ...
- 关于selenium实现滑块验证
关于selenium实现滑块验证 python2.7+selenium2实现淘宝滑块自动认证参考链接:https://blog.csdn.net/ldg513783697/article/detail ...
- Python MRO_C3
class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(C, A): pass class F(D, E ...
- Arrays.copyOfRange()
Comparable[] aux = Arrays.copyOfRange(arr,from, to); 复制数组arr, from下标开始, to下标结束. 但是不包括to. 所以复制代码为 Com ...
- 【c++】函数默认参数
c++ Prime Plus sixth edition page274 如何设置默认值呢?必须通过函数原型. 只有原型指定了默认值.函数定义与没有默认参数时完全相同. 参考 1. http://ww ...
- 【计算机视觉】欧拉角Pitch/Yaw/Roll
Pitch: 俯仰角: Yaw: 偏航角或者航向角: Roll: 横摆角或者翻滚角: 这几个角度是这样定义的,至于坐标系不同,则对应不同的XYZ轴及其方向: 1. https://en.wikiped ...
- NOI-1.1-10-字符表示超级玛丽
10:超级玛丽游戏 总时间限制: 1000ms 内存限制: 65536kB 描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. 输入 无. 输出 如样例所示. 样 ...
- web.net用户控件
1.它是以 Control注册 <%@ Control Language="C#" AutoEventWireup="true" CodeBehind=& ...
- 爬取贴吧中的html,并保存到相对应的文件夹中
功能:输入要爬取的贴吧名称,起始页和终止页即可. # -*- coding: utf-8 -*- import urllib.request import urllib.parse import os ...
- 测试那些事儿—简述CPU的工作原理
简单介绍CPU的工作原理 1.内部架构 CPU是由晶体管组成,其根本任务就是执行指令和数据处理,对计算机来说,就是由0和1组成的序列.CPU从逻辑上可分为3个模块,分别是控制单元,运算单元和存储单元. ...