F - Berland and the Shortest Paths

思路:

bfs+dfs

首先,bfs找出1到其他点的最短路径大小dis[i]

然后对于2...n中的每个节点u,找到它所能改变的所有前驱(在保证最短路径不变的情况下),即找到v,使得dis[v] + 1 == dis[u],并把u和v所连边保存下来

最后就是dfs递归暴力枚举每个点的前驱,然后输出答案

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define piii pair<int,pii>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 2e5 + ;
int n, m, k;
vector<pii>g[N];
vector<int>pre[N];
int dis[N];
bool vis[N];
char s[N];
vector<string>res;
void bfs(int st) {
queue<pii>q;
dis[] = ;
vis[] = true;
q.push({, });
while(!q.empty()) {
pii p = q.front();
q.pop();
for (int i = ; i < g[p.fi].size(); i++) {
int v = g[p.fi][i].fi;
if(!vis[v]) {
vis[v] = true;
dis[v] = p.se + ;
q.push({v, p.se + });
}
}
}
}
void dfs(int u) {
if((int) res.size() >= k) return ;
if(u > n) {
res.pb(s+);
return ;
}
for (int i = ; i < pre[u].size(); i++) {
s[pre[u][i]] = '';
dfs(u+);
s[pre[u][i]] = '';
}
}
int main() {
fio;
int u, v;
cin >> n >> m >> k;
for (int i = ; i <= m; i++) {
cin >> u >> v;
g[u].pb({v, i});
g[v].pb({u, i});
}
bfs();
for (int i = ; i <= n; i++) {
for (int j = ; j < g[i].size(); j++) {
pii p = g[i][j];
if(dis[p.fi]+ == dis[i]) pre[i].pb(p.se);
}
}
for (int i = ; i <= m; i++) s[i] = '';
dfs();
cout << (int)res.size() << endl;
for (int i = ; i < res.size(); i++) cout << res[i] << endl;
return ;
}

Codeforces 1005 F - Berland and the Shortest Paths的更多相关文章

  1. Codeforces Round #496 (Div. 3) F - Berland and the Shortest Paths

    F - Berland and the Shortest Paths 思路:还是很好想的,处理出来最短路径图,然后搜k个就好啦. #include<bits/stdc++.h> #defi ...

  2. [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)

    [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...

  3. 【例题收藏】◇例题·II◇ Berland and the Shortest Paths

    ◇例题·II◇ Berland and the Shortest Paths 题目来源:Codeforce 1005F +传送门+ ◆ 简单题意 给定一个n个点.m条边的无向图.保证图是连通的,且m≥ ...

  4. Berland and the Shortest Paths CodeForces - 1005F(最短路树)

    最短路树就是用bfs走一遍就可以了 d[v] = d[u] + 1 表示v是u的前驱边 然后遍历每个结点 存下它的前驱边 再用dfs遍历每个结点 依次取每个结点的某个前驱边即可 #include &l ...

  5. CF1005F Berland and the Shortest Paths

    \(\color{#0066ff}{ 题目描述 }\) 一个无向图(边权为1),输出一下选边的方案使\(\sum d_i\)最小(\(d_i\)为从1到i的最短路) 输出一个方案数和方案(方案数超过k ...

  6. CF1005F Berland and the Shortest Paths (树上构造最短路树)

    题目大意:给你一个边权为$1$的无向图,构造出所有$1$为根的最短路树并输出 性质:单源最短路树上每个点到根的路径 ,一定是这个点到根的最短路之一 边权为$1$,$bfs$出单源最短路,然后构建最短路 ...

  7. CF1005F Berland and the Shortest Paths 最短路树计数

    问题描述 LG-CF1005F 题解 由题面显然可得,所求即最短路树. 所以跑出最短路树,计数,输出方案即可. \(\mathrm{Code}\) #include<bits/stdc++.h& ...

  8. [CF1005F]Berland and the Shortest Paths_最短路树_堆优化dij

    Berland and the Shortest Paths 题目链接:https://www.codeforces.com/contest/1005/problem/F 数据范围:略. 题解: 太鬼 ...

  9. Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths

            F. Graph Without Long Directed Paths time limit per test 2 seconds memory limit per test 256 ...

随机推荐

  1. Apache正向代理和反向代理

    一.正向代理 先说一正向代理(Forward Proxy),通常普通用户使用的比较多的,是正向代理.也就是在浏览器的网络连接属性框中,填写上一个代理服务器的ip和端口,即可通过代理服务器中转,去浏览网 ...

  2. Spring是如何处理注解的

    如果你看到了注解,那么一定有什么代码在什么地方处理了它. Alan Hohn 我教Java课程时强调的一点是注解是惰性的.换句话说,它们只是标记,可能具有某些属性,但没有自己的行为.因此,每当你在一段 ...

  3. ubuntu18.04 安装新版本openssl

    首先我们应该知道ubuntu18.04内置了1.1.0g版本的openssl: 使用下面的apt命令更新Ubuntu存储库并安装软件包编译的软件包依赖项: sudo apt update sudo a ...

  4. 20145208 蔡野 《网络对抗》Exp8 Web基础

    20145208 蔡野 <网络对抗>Exp8 Web基础 本实践的具体要求有: (1).Web前端HTML(1分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POS ...

  5. python --- 21 MRO C3算法

    一.python2.2之前用的是   经典类的MRO继承 ①深度递归继承     从左到右 ,一条路走到黑 ②广度继承           一层一层的继承 深度继承时   为   R 1 2 3 4 ...

  6. Bootstrap3基础 list-inline 无序列表横向显示

      内容 参数   OS   Windows 10 x64   browser   Firefox 65.0.2   framework     Bootstrap 3.3.7   editor    ...

  7. Flutter基础用法解析

    解析开始 Flutter中一切皆widget,一切皆组件.学习Flutter中,必须首先了解Flutter的widget.先从最基本的MaterialApp和Scaffold开始了解 1 Materi ...

  8. HDU - 1875 畅通工程再续【最小生成树】

    Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖 ...

  9. What are the differences between Flyweight and Object Pool patterns?

    What are the differences between Flyweight and Object Pool patterns? They differ in the way they are ...

  10. How Flyway works

    The easiest scenario is when you point Flyway to an empty database. It will try to locate its schema ...