[Android Studio] Using API of OpenCV DNN
前言
一、故事背景
- NDK方法人脸识别
OpenCV4Android系列:
1. OpenCV4Android开发实录(1):移植OpenCV3.3.0库到Android Studio
2.OpenCV4Android开发实录(2): 使用OpenCV3.3.0库实现人脸检测
- 轻量化卷积模型
纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception
- 移动设备集成OpenCV DNN
Official tutorials, which looks good: https://docs.opencv.org/3.4.1/d0/d6c/tutorial_dnn_android.html
- tensorboard监控训练过程
深度学习入门篇--手把手教你用 TensorFlow 训练模型
二、从训练到部署
- 目的
训练一个OpenCV DNN可以集成并部署在移动端的模型。
- 训练
Ref: 深度学习入门篇--手把手教你用 TensorFlow 训练模型
Ref: [Tensorflow] Object Detection API - build your training environment
这里,重点补充下 tensorboard 的相关内容。
可能的位置: ./object_detection/eval_util.py
可视化:
tensorboard --logdir= D:/training-sets/data-translate/training
- 部署
From: https://github.com/opencv/opencv/tree/master/samples/android
Ref: https://github.com/floe/opencv-tutorial-1-camerapreview
Ref: https://github.com/floe/opencv-tutorial-2-mixedprocessing
三、部署到手机
- TensorFlow 提供的版本

- OpenCV 支持的版本
参见:opencv_extra/testdata/dnn/

Jeff: 对应的v2比较大,估计是为了性能考虑,敬请期待ssdlite版本。
- 手机测试代码

结合tutorial-3和objdetect就好,代码示范如下:
package org.opencv.samples.tutorial1; import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Mat;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
import org.opencv.dnn.Dnn; // Jeffrey import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.SurfaceView;
import android.view.WindowManager;
import android.widget.Toast; //------------------------------------------------------------------- import android.content.Context;
import android.content.res.AssetManager;
//import android.os.Bundle;
//import android.support.v7.app.AppCompatActivity; # Jeff: ignore.
//import android.util.Log; //import org.opencv.android.BaseLoaderCallback;
//import org.opencv.android.CameraBridgeViewBase;
//import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
//import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
//import org.opencv.android.LoaderCallbackInterface;
//import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
//import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.dnn.Net;
//import org.opencv.dnn.Dnn;
import org.opencv.imgproc.Imgproc; import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException; //------------------------------------------------------------------- public class Tutorial1Activity extends Activity implements CvCameraViewListener2 {
private static final String TAG = "OCVSample::Activity"; private CameraBridgeViewBase mOpenCvCameraView;
private boolean mIsJavaCamera = true;
private MenuItem mItemSwitchCamera = null; private static final String[] classNames = {"background", "laava"};
private Net net; private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch (status) {
case LoaderCallbackInterface.SUCCESS:
{
Log.i(TAG, "OpenCV loaded successfully");
mOpenCvCameraView.enableView();
} break;
default:
{
super.onManagerConnected(status);
} break;
}
}
}; public Tutorial1Activity() {
Log.i(TAG, "Instantiated new " + this.getClass());
} /** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
Log.i(TAG, "called onCreate");
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON); setContentView(R.layout.tutorial1_surface_view); mOpenCvCameraView = (CameraBridgeViewBase) findViewById(R.id.tutorial1_activity_java_surface_view);
mOpenCvCameraView.setVisibility(SurfaceView.VISIBLE);
mOpenCvCameraView.setCvCameraViewListener(this);
} //------------------------------------------------------------------- @Override
public void onPause() {
super.onPause();
if (mOpenCvCameraView != null)
mOpenCvCameraView.disableView();
} @Override
public void onResume() {
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0, this, mLoaderCallback);
} else {
Log.d(TAG, "OpenCV library found inside package. Using it!");
mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
}
} public void onDestroy() {
super.onDestroy();
if (mOpenCvCameraView != null)
mOpenCvCameraView.disableView();
} //------------------------------------------------------------------- // Upload file to storage and return a path.
private static String getPath(String file, Context context) {
AssetManager assetManager = context.getAssets(); BufferedInputStream inputStream = null;
try {
// Read data from assets.
inputStream = new BufferedInputStream(assetManager.open(file));
byte[] data = new byte[inputStream.available()];
inputStream.read(data);
inputStream.close(); // Create copy file in storage.
File outFile = new File(context.getFilesDir(), file);
FileOutputStream os = new FileOutputStream(outFile);
os.write(data);
os.close();
// Return a path to file which may be read in common way.
return outFile.getAbsolutePath(); } catch (IOException ex) {
Log.i(TAG, "Failed to upload a file");
}
return "";
} // Load a network.
public void onCameraViewStarted(int width, int height) { String proto = getPath("MobileNetSSD_deploy.prototxt", this);
String weights = getPath("MobileNetSSD_deploy.caffemodel", this); String config = getPath("ssd_mobilenet_v1_coco.pbtxt", this);
String model = getPath("frozen_inference_graph.pb", this); // net = Dnn.readNetFromCaffe(proto, weights); net = Dnn.readNetFromTensorflow(model, config); Log.i(TAG, "Network loaded successfully");
} //------------------------------------------------------------------- /**
*
*
*
* @param inputFrame
* @return
*/
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
final int IN_WIDTH = 300;
final int IN_HEIGHT = 300;
final float WH_RATIO = (float)IN_WIDTH / IN_HEIGHT;
final double IN_SCALE_FACTOR = 0.007843;
final double MEAN_VAL = 127.5;
final double THRESHOLD = 0.2; // Get a new frame
Mat frame = inputFrame.rgba();
Imgproc.cvtColor(frame, frame, Imgproc.COLOR_RGBA2RGB); // Forward image through network.
Mat blob = Dnn.blobFromImage(frame, IN_SCALE_FACTOR,
new Size(IN_WIDTH, IN_HEIGHT),
new Scalar(MEAN_VAL, MEAN_VAL, MEAN_VAL), false, false); net.setInput(blob);
Mat detections = net.forward(); int cols = frame.cols();
int rows = frame.rows(); Size cropSize;
if ((float)cols / rows > WH_RATIO) {
cropSize = new Size(rows * WH_RATIO, rows);
} else {
cropSize = new Size(cols, cols / WH_RATIO);
} int y1 = (int)(rows - cropSize.height) / 2;
int y2 = (int)(y1 + cropSize.height);
int x1 = (int)(cols - cropSize.width) / 2;
int x2 = (int)(x1 + cropSize.width);
Mat subFrame = frame.submat(y1, y2, x1, x2); cols = subFrame.cols();
rows = subFrame.rows(); detections = detections.reshape(1, (int)detections.total() / 7); for (int i = 0; i < detections.rows(); ++i) {
double confidence = detections.get(i, 2)[0];
if (confidence > THRESHOLD) {
int classId = (int)detections.get(i, 1)[0]; int xLeftBottom = (int)(detections.get(i, 3)[0] * cols);
int yLeftBottom = (int)(detections.get(i, 4)[0] * rows);
int xRightTop = (int)(detections.get(i, 5)[0] * cols);
int yRightTop = (int)(detections.get(i, 6)[0] * rows); // Draw rectangle around detected object.
Imgproc.rectangle(subFrame, new Point(xLeftBottom, yLeftBottom),
new Point(xRightTop, yRightTop),
new Scalar(0, 255, 0));
String label = classNames[classId] + ": " + confidence;
int[] baseLine = new int[1];
Size labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); // Draw background for label.
Imgproc.rectangle(subFrame, new Point(xLeftBottom, yLeftBottom - labelSize.height),
new Point(xLeftBottom + labelSize.width, yLeftBottom + baseLine[0]),
new Scalar(255, 255, 255), Core.FILLED); // Write class name and confidence.
Imgproc.putText(subFrame, label, new Point(xLeftBottom, yLeftBottom),
Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0));
}
}
return frame;
} //------------------------------------------------------------------- public void onCameraViewStopped() {
} //-------------------------------------------------------------------
}
End.
[Android Studio] Using API of OpenCV DNN的更多相关文章
- android studio 使用 jni 编译 opencv 完整实例 之 图像边缘检测!从此在andrid中自由使用 图像匹配、识别、检测
目录: 1,过程感慨: 2,运行环境: 3,准备工作: 4,编译 .so 5,遇到的关键问题及其解决方法 6,实现效果截图. (原创:转载声明出处:http://www.cnblogs.com/lin ...
- android studio 使用 jni 编译 opencv 完整实例 之 图像边缘检测!
目录: 1,过程感慨: 2,运行环境: 3,准备工作: 4,编译 .so 5,遇到的关键问题及其解决方法 6,实现效果截图. ------------------------------------- ...
- Android Studio配置及使用OpenCV
1.下载及目录介绍 进入官网(http://opencv.org/)下载OpenCV4Android并解压(这里是OpenCV-3.2.0-android-sdk).下面是目录的结构图: sdk ...
- 使用Android Studio查看API文档
在使用Android Studio编码时,若要查看某个类或函数的释义, 只需将光标移动至要查看释义的代码处,然后按下Ctrl+Q,便会弹出文档描述. 然而,有时候会出现如下状况: 因为默认查看的是在线 ...
- android studio compile api implementation 区别
compile与api 二者等同,无区别 implementation与compile或implementation与api implementation编译的依赖只作用于当前的module.即APP ...
- Android Studio中配置及使用OpenCV示例
Android Studio配置及使用OpenCV 前言:最近在做项目移植,项目较大,在Eclipse中配置的Jni及OpenCV环境没任何问题,但是迁移到Studio中就问题一大堆,网上也找了一些资 ...
- [Android Studio] Using Java to call OpenCV
Environment: Android studio 2.2.3, OpenCV 2.4.9 For Android, Android 6 with api 23 for X86 一.File: b ...
- opencv-android笔记1:android studio 2.3 + opencv-android-sdk 实现 camera预览
Android studio环境配置不再赘述,可以参照我的其他博客. Android应用程序开发环境搭建:http://blog.csdn.net/ja33son/article/details/61 ...
- 【OpenCV for Android】Android Studio JNI和NDK配置及采坑记录
在配置好Android studio的OpenCV环境后,我们就可以通过Java代码调用OpenCV的API了,但是在通常情况下,用Java代码编写图像处理算法的运行效率是没有C++代码高的,在应用层 ...
随机推荐
- 各种组件的js 获取值 / js动态赋值
jQuery获取Select选择的Text和Value:语法解释:1. $("#select_id").change(function(){//code...}); //为Se ...
- vim 语法着色完全配置
原文地址:http://blog.sina.com.cn/s/blog_878940b3010156ku.html 在终端输入:sudo vim /etc/vim/vimrc 打开配置文件.编辑命 ...
- C#编程(七十九)---------- 反射
反射 在介绍翻着之前,先说两个小案例 B超:什么叫B超呢?就是透过肚皮能看到你内脏的情况,不用打开肚子才能看.这是什么样的一种技术呢?B超是B型超声波,它可以透过肚皮通过向你体内发射B型超声波,当超声 ...
- Unity Shader-后处理:高斯模糊
一.简介 上一篇文章学习了模糊的原理以及基本的模糊实现,对于清晰和模糊这个定义感觉还是比较说明问题,这里再贴出一下:“清晰的图片,各个像素之间会有明显的过渡,而如果各个像素之间的差距不是很大,那么 ...
- 如何将revit模型背景设置为黑色
Revit软件建模窗口默认的背景色为白色,在用惯了CAD的新用户转到Revit软件的时候,会对Revit白色的背景不太适应,跟AutoCAD一样,Revit提供自定义工作区背景颜色的功能--其实,你只 ...
- 如何成为一名Top DevOps Engineer
软件世界的战场 如果你对devops的概念不是很了解的话,没有关系,可以先跳到维基百科阅读一下DevOps条目.有了模模糊糊的概念之后, 我们先抛开所有市面上对于devops的各种夸大和炒作,首先来思 ...
- nginx.conf 集群完整配置
###############################nginx.conf 集群完整配置############################### #user nobody; # user ...
- android makefile文件批量拷贝文件的方法
该方法是shell 和makefile组合使用 wallpapers := $(shell ls packages/apps/hyst_apps/NewBingoLauncher_C/default_ ...
- 7.翻译系列:EF 6中的继承策略(EF 6 Code-First 系列)
原文地址:http://www.entityframeworktutorial.net/code-first/inheritance-strategy-in-code-first.aspx EF 6 ...
- 如何禁止VS显示“You have mixed tabs and spaces. Fix this?”
如何禁止VS显示“You have mixed tabs and spaces. Fix this?” VS2013 版本的解决方案: Vs2013 IDE下,编辑C++的工程源码,在打开文件的时候 ...