第一步先打一个表,就是利用轮廓线DP去打一个没有管有没有分界线组合数量的表

#include<bits/stdc++.h>
using namespace std; const int mod = 1e9 + ;
const int maxn = <<;
int dp[][maxn + ];
int ans[][]; int solve(int n, int m){
if(n * m % == ) return ;
memset(dp, , sizeof(dp));
dp[][] = ;
int ing = , ed = ;
for(int i = ; i < n; i ++){
for(int j = ; j < m; j ++){
swap(ing, ed);
memset(dp[ing], , sizeof(dp[ing]));
for(int sta = ; sta < (<<m); sta ++){
if(sta & (<<j)) dp[ing][sta&(~(<<j))] = (dp[ing][sta&(~(<<j))] + dp[ed][sta]) % mod;//无添加
if((sta & (<<j)) == ) dp[ing][sta | (<<j)] = (dp[ing][sta | (<<j)] + dp[ed][sta]) % mod;//加上2*1(竖放)
if(((sta & (<<j)) == ) && (j != m - )) dp[ing][sta | (<<(j+))] = (dp[ing][sta | (<<(j+))] + dp[ed][sta]) % mod;//加上1*2(横放)
}
}
}
return dp[ing][];
} int main(){
freopen("data.txt", "w", stdout);
for(int i = ; i < ; i ++)
for(int j = ; j < ; j ++)
ans[i][j] = solve(i, j);
for(int i = 0; i < ; i ++){
for(int j = 0; j < ; j ++)printf("%d, ",ans[i][j]);
}
return ;
}

然后用容器原理加上枚举列当前分界线情况去递推容斥。具体如代码:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=1e9+; LL dp[][]={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
LL f[];
int b[],cnt,siz,n,m;
LL solve(int n,int m){
LL ret = ;
for(int sta = ; sta < ( << (m - )); sta ++){
int cnt = , len = ;
for(int i = ; i < m - ; i ++){
len ++;
if(sta >> i & ){
b[cnt ++] = len;
len = ;
}
}
b[cnt ++] = ++len; for(int i = ; i <= n; i ++){
for(int j = ; j < i; j ++){
LL temp = ;
for(int k = ; k < cnt; k ++)
temp = temp * dp[b[k]][i - j] % mod;
if(!j) f[i] = temp;
else f[i] = ( (f[i] - f[j] * temp % mod) % mod + mod ) % mod;
}
}
if(!(cnt&)) ret = ( (ret - f[n]) % mod + mod ) % mod;
else ret = (ret + f[n]) % mod;
}
return ret;
}
int main(){
while(~scanf("%d%d",&n,&m)) printf("%lld\n",solve(n,m));
return ;
}

Solid Dominoes Tilings (轮廓线dp打表 + 容器)的更多相关文章

  1. 2016 Multi-University Training Contest 1 I. Solid Dominoes Tilings

    Solid Dominoes Tilings Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  2. HDU5731 Solid Dominoes Tilings 状压dp+状压容斥

    题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...

  3. HDU1565 方格取数 &&uva 11270 轮廓线DP

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. POJ 3254 Corn Fields (状压DP,轮廓线DP)

    题意: 有一个n*m的矩阵(0<n,m<=12),有部分的格子可种草,有部分不可种,问有多少种不同的种草方案(完全不种也可以算1种,对答案取模后输出)? 思路: 明显的状压DP啦,只是怎样 ...

  5. 【NOI2019模拟2019.7.1】三格骨牌(轮廓线dp转杨图上钩子定理)

    Description \(n,m<=1e4,mod ~1e9+7\) 题解: 显然右边那个图形只有旋转90°和270°后才能放置. 先考虑一个暴力的轮廓线dp: 假设已经放了编号前i的骨牌,那 ...

  6. Mondriaan's Dream 轮廓线DP 状压

    Mondriaan's Dream 题目链接 Problem Description Squares and rectangles fascinated the famous Dutch painte ...

  7. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  8. 轮廓线DP POJ3254 && BZOJ 1087

    补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮 ...

  9. HDU4804 Campus Design 轮廓线dp

    跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌, ...

随机推荐

  1. Struts2漏洞检查工具

  2. # 20165225 《Java程序设计》第一周学习总结

    20165225 <Java程序设计>第一周学习总结 1.视频与课本中的学习: 首先是为了运行和开发Java分别安装了JRE和JDK,具体做法在老师给的<Java2 实用教程(第五版 ...

  3. Java 二进制数据转成文件

    SqlServer数据库中,存储文件的字段的类型是image,对应的Java类型是byte[],下面的函数将演示如何把读取出来数据放入指定目录.当然,首先需要从数据库读出,然后调用该方法. impor ...

  4. nodejs 学习六 express 三种查询url参数方法

    req.param() 是被废弃的api req.params 俗点:取带冒号的参数 req.body 可以肯定的一点是req.body一定是post请求,express里依赖的中间件必须有bodyP ...

  5. zabbix准备:mysql安装

    php在编译时需要mysql的配置,这样PHP远程连接mysql才有用.1.创建mysql用户和相关目录(配置文件里设置的目录) groupadd mysql useradd -g mysql -M ...

  6. Linux下Zookeeper的安装

    Linux下Zookeeper的安装 安装环境: Linux:centos6.4 Jdk:1.7以上版本 Zookeeper是java开发的可以运行在windows.linux环境.需要先安装jdk. ...

  7. VS Code编辑器对git项目的支持

    使用git随便clone一个项目下来, 然后用vscode打开项目, 随便打开某个文件, 添加几行代码: 9-11行是我新添加的, 左边绿色的竖条(点击就会看到明细)就表示这几行是新添加的. 然后修改 ...

  8. PropTypes使用

    PropTypes防止后期代码传参数错误,所以加一个校验, 代码: import React, {Component,PropTypes} from 'react'; import {View, Te ...

  9. RN picker使用

    这里是只有苹果的,如果想适配andorid,可以在showPickerFun方法里面使用platefrom判断 代码: import React, {Component} from 'react'; ...

  10. Windows 7中200M神秘隐藏分区

    裸机全新安装Windows 7的用户,在安装完成后运行diskmgmt.msc打开磁盘管理器,可以看到在系统分区(一般为C分区)之前有一个大小为200MB的隐藏分区.这个特殊的隐藏分区与Windows ...