系统环境:微软云Linux DS12系列、Centos6.5 、MySQL 5.7.10、生产环境,step1,step2是案例,精彩的剖析部分在step3,step4.

1、慢sql语句大概需要13秒

原来的sql语句要13秒,sql如下:

SELECT

(SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_MERCHANT t2

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t2.ID

AND t2.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A') AS '安装',

(SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_HEARTBEAT t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.`ID` = t2.`DEVICE_ID`

AND t2.ENABLED = 1) AS '在线',

(SELECT

COUNT(DISTINCT (t1.`SN`))

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`) AS '连通',

(SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_MERCHANT t2

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t2.ID

AND t2.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND exists( select 1 )

AND t1.ID IN

(SELECT

t2.`DEVICE_ID`

FROM

TB_BIS_POS_ORDER t2

WHERE t2.`CREATE_DATE` >= DATE_FORMAT(NOW(), '%Y-%m-%d'))

AND t1.ID NOT IN

(SELECT

t2.`DEVICE_ID`

FROM

TB_BIS_POS_ORDER t2

WHERE t2.`CREATE_DATE` <= DATE_FORMAT(NOW(), '%Y-%m-%d'))

) AS '今日连通',

(SELECT

COUNT(DISTINCT (t1.`SN`))

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`

AND UNIX_TIMESTAMP(t2.CREATE_DATE) >= UNIX_TIMESTAMP(NOW()) - 60 * 60 * 2) AS '正常交易',

(SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`) AS '交易共计',

(SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`

AND t2.`CREATE_DATE` >= DATE_FORMAT(NOW(), '%Y-%m-%d')) AS '今日产生'

FROM

DUAL ;

2、优化后提升100倍,只要0.09秒

和开发人员熟悉了业务之后,优化成如下,从13秒到0.09秒,效率提升了100多倍。

采用如下3种策略提升百倍效率,如下

/*(1)内连接+distinct效率低下,换成exists高效*/

/*(2)IN不走索引,优化成EXISTS如下*/

/*(3)字段不能做函数处理,不然不走索引,优化成如下*/

SELECT sql_no_cache

(

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_MERCHANT t2

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t2.ID

AND t2.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

) AS '安装',

(

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_HEARTBEAT t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.`ID` = t2.`DEVICE_ID`

AND t2.ENABLED = 1

) AS '在线',

(

/*

SELECT

COUNT(DISTINCT (t1.`SN`))

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`*/

/*(1)内连接+distinct效率低下,换成exists高效*/

SELECT

COUNT(t1.`SN`)

FROM

TB_BIS_POS_DEVICE t1

WHERE t1.`PROJECT_ID` = '1024'

AND EXISTS(SELECT 1 FROM  TB_BIS_POS_ORDER t2 WHERE t1.ID = t2.`DEVICE_ID`)

AND EXISTS(SELECT 1 FROM  TB_BIS_MERCHANT t3 WHERE t1.MERCHANT_ID = t3.ID     AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A')

) AS '连通',

(

/*

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_MERCHANT t2

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t2.ID

AND t2.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND exists( select 1 )

AND t1.ID IN

(SELECT

t2.`DEVICE_ID`

FROM

TB_BIS_POS_ORDER t2

WHERE t2.`CREATE_DATE` >= DATE_FORMAT(NOW(), '%Y-%m-%d'))

AND t1.ID NOT IN

(SELECT

t2.`DEVICE_ID`

FROM

TB_BIS_POS_ORDER t2

WHERE t2.`CREATE_DATE` <= DATE_FORMAT(NOW(), '%Y-%m-%d'))

*/

/*(2)IN不走索引,优化成EXISTS如下*/

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_MERCHANT t2

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t2.ID

AND t2.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND EXISTS( SELECT 1  FROM  TB_BIS_POS_ORDER t3  WHERE t3.`CREATE_DATE` >= DATE_FORMAT(NOW(), '%Y-%m-%d') AND t3.`DEVICE_ID`=t1.`ID`)

) AS '今日连通',

(

SELECT

COUNT(DISTINCT (t1.`SN`))

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`

/*AND UNIX_TIMESTAMP(t2.CREATE_DATE) >= UNIX_TIMESTAMP(NOW()) - 60 * 60 * 2*/

/*(3)字段不能做函数处理,不然不走索引,优化成如下*/

AND t2.CREATE_DATE >= DATE_ADD(NOW(),INTERVAL 2 HOUR)

) AS '正常交易',

(

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`

) AS '交易共计',

(

SELECT

COUNT(*)

FROM

TB_BIS_POS_DEVICE t1,

TB_BIS_POS_ORDER t2,

TB_BIS_MERCHANT t3

WHERE t1.`PROJECT_ID` = '1024'

AND t1.MERCHANT_ID = t3.ID

AND t3.SPACE_ID = 'DE907E67FB9B487FA762E6E9B795072A'

AND t1.ID = t2.`DEVICE_ID`

AND t2.`CREATE_DATE` >= DATE_FORMAT(NOW(), '%Y-%m-%d')

) AS '今日产生'

FROM

DUAL ;

3、SQL优化准则:小结果集驱动大结果集

大家遇到相似的,可以借鉴下,当然还有其它的情况,也需要注意,接下来说下在机械磁盘的时代浪潮里面,优化必须要遵守的一大准则à用小结果集驱动大结果集

永远用小的结果集驱动大的结果集

很多看过数据库开发指南或者听过某某大师网络课程的开发人缘,喜欢在优化 SQL 的时候使用小表驱动大表,在在很多时候有效,但是并不是100%有效,必须看实际场景,主要是因为大表经过 WHERE 条件过滤之后返回的结果集并不一定就比小表所返回的大,也许更小。在这种情况下如果仍然采用小表驱动大表,就会得到相反的性能效果。

bty:他们说的用小表驱动大表只是为了让开发人员方便记忆方便理解,但是开发人员不能死抱这个不放,需要理解深层次的原因。

因为在MySQL中,只有 Nested Loop 一种 Join 方式,也就是说MySQL的 Join 都是通过嵌套循环来实现的。驱动结果集越大,所需要循环就越多,那么被驱动表的访问次数自然也就越多,而每次访问被驱动表,即使需要的逻辑 IO 很少,循环次数多了,总量也不可能小,而且每次循环都不能避免消耗CPU,所以 CPU 运算量也会跟着增加。如果仅仅以表的大小来作为驱动表的判断依据,假若小表过滤后所剩下的结果集比大表多很多,结果就会在嵌套循环中带来更多的循环次数,这种情况小勇大表驱动小表就是低效率了(因为根据在机械磁盘的时代里面,IO是最大瓶颈,减少IO量就是提升sql效率,增加IO就意味增加cpu消耗,就意味着效率低下),反之,所需要的循环次数就会更少,总体 IO 量和 CPU 运算量也会更少。

而在非 Nested Loop  的 Join  算法中,比如 Oracle  中的 Hash  Join,就不是以表大小来决定,而是以结果集来决定,所以以小结果集驱动大的结果集同样是最优的选择。

所以,在优化数据库Join Query 的时候,不管是MySQL还是Oracle等,最基本的原则就是“用小结果集驱动大结果集”,通过这个原则来减少嵌套循环中的循环次数,以减少 IO总量及CPU运算的次数,如下SQL模板所示:

SELECT  t1.c1,t2.c2   FROM 小结果集 AS t1  LEFT JOIN 大结果集 AS t2 ON t1.id=t2.cid WHERE t1.created_time > ‘2016-10-13’ AND t1.is_del=’0’ AND t2.project_id=’XJ160603’ and ……;

4、深度思考 IN ---- EXISTS

按照前面的小结果集驱动大结果集的规则,来深度解析下in和exists,in是把外表和内表作hash 连接,是以in子查询驱动外面的表集合,而exists 是对外表作loop 循环,每次loop 循环再对内表进行查询,以外表集合驱动exists子查询,这一点上in和exists是相反的。
 
所以一直以来dba会经常讲认为exists 比in 效率高的说法的前提是普通开发人员没有认识这么深刻,为了让开发人员容易理解,才这样粗鲁简单的说,而且一般子查询的结果集都会比外表要大,所以80%的情况下都适用。
 
但是数据库工程师要知道in和exists的根本核心区别,所以说,如果查询的两个表大小相当,那么用in 和exists 差别不大。如果外表集合和子查询集合中,一个较小,一个是较大,则子查询表集合大的用exists,子查询表集合小的用in,永远遵循小结果集驱动大结果集的原则。

MySQL 5.7 优化SQL提升100倍执行效率的深度思考(GO)的更多相关文章

  1. 阿里云maven仓库地址,速度提升100倍

    参照:https://www.cnblogs.com/xxt19970908/p/6685777.html maven仓库用过的人都知道,国内有多么的悲催.还好有比较好用的镜像可以使用,尽快记录下来. ...

  2. 分布式协同AI基准测试项目Ianvs:工业场景提升5倍研发效率

    摘要:全场景可扩展的分布式协同AI基准测试项目 Ianvs(雅努斯),能为算法及服务开发者提供全面开发套件支持,以研发.衡量和优化分布式协同AI系统. 本文分享自华为云社区<KubeEdge|分 ...

  3. mysql第四篇--SQL逻辑查询语句执行顺序

    mysql第四篇--SQL逻辑查询语句执行顺序 一.SQL语句定义顺序 SELECT DISTINCT <select_list> FROM <left_table> < ...

  4. 提升 Hive Query 执行效率 - Hive LLAP

    从 Hive 刚推出到现在,得益于社区对它的不断贡献,使得 Hive执行 query 效率显著提升.其中比较有代表性的功能如 Tez (将多个 job整合为一个DAG job)以及 CBO(Cost- ...

  5. 优化临时表使用,SQL语句性能提升100倍

    [问题现象] 线上mysql数据库爆出一个慢查询,DBA观察发现,查询时服务器IO飙升,IO占用率达到100%, 执行时间长达7s左右.SQL语句如下:SELECT DISTINCT g.*, cp. ...

  6. 转--优化临时表使用,SQL语句性能提升100倍

    转自:http://www.51testing.com/html/01/n-867201-2.html [问题现象] 线上mysql数据库爆出一个慢查询,DBA观察发现,查询时服务器IO飙升,IO占用 ...

  7. sql 字段先计算后再拿比对的字段进行比对 效率提升100倍

    关于日期索引的使用,不要计算后再对比,否则使用不了索引例如:以下执行不了索引,耗时很大 dywl=# explain analyze SELECT car_bill.billno,car_bill.b ...

  8. 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上

    在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...

  9. mysql五补充部分:SQL逻辑查询语句执行顺序

    一 SELECT语句关键字的定义顺序 SELECT DISTINCT <select_list> FROM <left_table> <join_type> JOI ...

随机推荐

  1. iOS原生和React-Native之间的交互1

    今天,记录一下iOS原生和React-Native之间的交互.如果第一次接触最好先移步至 http://www.cnblogs.com/shaoting/p/6388502.html 先看一下怎么在i ...

  2. DocumentFragment --更快捷操作DOM的途径

    使用DocumentFragment将一批子元素添加到任何类似node的父节点上,对这批子元素的操作不需要一个真正的根节点.可以不依赖可见的DOM来构造一个DOM结构,而效率高是它真正的优势,试验表明 ...

  3. springmvc实现json交互 -requestBody和responseBody

    json数据交互 1.为什么要进行json数据交互 json数据格式在接口调用中.html页面中较常用,json格式比较简单,解析还比较方便. 比如:webservice接口,传输json数据. 2. ...

  4. SQL*Plus连接符拼接输出

    在日常工作中,可能需要使用重复的命令,修改的只是某个不同字段的值,可以使用连接字符串进行拼接 #本篇文档: 一.使用连接符拼接SQL 二.Spool输出查询结果 三.Spool输出xml/  html ...

  5. 【Eigen开源库】linux系统如何安装使用Eigen库

    code /* * File : haedPose.cpp * Coder: * Date : 20181126 * Refer: https://www.learnopencv.com/head-p ...

  6. Gym - 101806R :Recipe(分治+斜率优化)

    题意:有一个厨师,他买菜-做菜-买菜-做菜....-做菜,一共有N天,他的冰箱里只能有一个菜,在他做菜的第二天才会买菜,如果菜不做,放在冰箱里,每天新鲜程度会下降1. 第一天也会买菜,第i天的菜新鲜程 ...

  7. HihoCoder - 1807:好的数字串 (KMP DP)

    Sample Input 6 1212 Sample Output 298 给定一个数字字符串S,如果一个数字字符串(只包含0-9,可以有前导0)中出现且只出现1次S,我们就称这个字符串是好的. 例如 ...

  8. poj 2253——Frogger

    这个题一开始不知道咋做,但是大致有点意思.后来还是借鉴了题解发现可以用dijkstra,不太理解.但是在最后自己推的时候突然理解了. dijkstra应该也算是动态规划.我们用dis[i]数组作为青蛙 ...

  9. 云计算SPI(SaaS、PaaS、IaaS)

    云计算SPI(SaaS.PaaS.IaaS) The other day, I arrived at the SAP LABS CHINA for interview with my pleasure ...

  10. CH3B16 魔法珠

    题意 3B16 魔法珠 0x3B「数学知识」练习 描述 Freda和rainbow是超自然之界学校(Preternatural Kingdom University,简称PKU)魔法学院的学生.为了展 ...