【描述】

农夫约翰从来只用调配得最好的饲料来喂他的奶牛。饲料用三种原料调配成:大麦,燕麦和小麦。他知道自己的饲料精确的配比,在市场上是买不到这样的饲料的。他只好购买其他三种混合饲料(同样都由三种麦子组成),然后将它们混合,来调配他的完美饲料。

给出三组整数,表示 大麦:燕麦:小麦 的比例,找出用这三种饲料调配 x:y:z 的饲料的方法。

例如,给出目标饲料 3:4:5 和三种饲料的比例:

    1:2:3
3:7:1
2:1:2

你必须编程找出使这三种饲料用量最少的方案,要是不能用这三种饲料调配目标饲料,输出“NONE”。“用量最少”意味着三种饲料的用量(整数)的和必须最小。

对于上面的例子,你可以用8份饲料1,1份饲料2,和5份饲料3,来得到7份目标饲料:

8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)

表示饲料比例的整数以及目标饲料的都是小于100的非负整数。表示各种饲料的份数的整数,都小于100。一种混合物的比例不会由其他混合物的比例直接相加得到。

【格式】

PROGRAM NAME: ratios

INPUT FORMAT:

(file ratios.in)

Line 1: 三个用空格分开的整数,表示目标饲料

Line 2..4: 每行包括三个用空格分开的整数,表示农夫约翰买进的饲料的比例

OUTPUT FORMAT:

(file ratios.out)

输出文件要包括一行,这一行要么有四个整数,要么是“NONE”。前三个整数表示三种饲料的份数,用这样的配比可以得到目标饲料。第四个整数表示混合三种饲料后得到的目标饲料的份数。

【分析】

可以用枚举,不会超时,但是会很慢。

这里给出用高斯消元的做法,枚举目标量。然后判断是否有解就行了。

 #include <cstdlib>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <fstream>
using namespace std;
int data[][];
int A[][];//求解
void init(int num);
int gauss(int n);//高斯消元
void debug();
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int lcm(int a,int b){return a*b/gcd(a,b);}
int main()
{
int i;
//文件操作
freopen("ratios.in","r",stdin);
freopen("ratios.out","w",stdout);
memset(data,,sizeof(data));
//输入数据
scanf("%d%d%d",&data[][],&data[][],&data[][]);
for (i=;i<;i++) scanf("%d%d%d",&data[i][],&data[i][],&data[i][]);
for (i=;i<=;i++)
{
init(i);//初始化
if (gauss(i)) return ;
}
printf("NONE");
return ;
}
void init(int num)
{
int i,j;
for (i=;i<;i++)//行列
for (j=;j<;j++) A[i][j]=data[j][i];
A[][]=data[][]*num;
A[][]=data[][]*num;
A[][]=data[][]*num; }
void debug()//调试
{
int i,j;
for (i=;i<;i++)
{
for (j=;j<;j++) printf("%d ",A[i][j]);
printf("\n");
}
printf("\n");
}
int gauss(int m)
{
int i=,j=,k,l,r,tmp,tmp1,tmp2,ans[];
memset(ans,,sizeof(ans));
while((i<)&&(j<))//i是行数,j当前需要消除的行数
{
r=i;//绝对值最大
for(k=i+;k<;k++) if(A[k][j]>A[i][j]) r=k;
if (r!=i) for(k=;k<;k++) swap(A[i][k],A[r][k]); if(A[i][j]!=)
{
for(l=i+;l<;l++)
if(A[l][j]!=)
{
tmp=lcm(abs(A[l][j]),abs(A[i][j]));
tmp1=tmp/A[i][j];
tmp2=tmp/A[l][j];
for(k=j;k<;k++) A[l][k]=A[l][k]*tmp2-A[i][k]*tmp1;
}
i++;//行数
}
j++;
}
//debug();
if(i==)
{
for(i=;i>=;i--)
{
tmp=;
for(j=i+;j<;j++) tmp+=A[i][j]*ans[j]; if((A[i][]-tmp)%A[i][i]!=) return false;
ans[i]=(A[i][]-tmp)/A[i][i];
} if((ans[]<) || (ans[]<) || (ans[]<)) return ;//只要
printf("%d %d %d %d\n",ans[],ans[],ans[],m);
return ;
}
else return ;
}

【USACO 3.2.4】饲料调配的更多相关文章

  1. 洛谷P2729 饲料调配 Feed Ratios

    P2729 饲料调配 Feed Ratios 36通过 103提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目背景 农夫约翰从来只用调 ...

  2. 【USACO】又买饲料 单调队列dp

    题目描述 约翰开车回家,又准备顺路买点饲料了(咦?为啥要说“又”字?)回家的路程一共有 E 公里, 这一路上会经过 N 家商店,第 i 家店里有 F i 吨饲料,售价为每吨 C i 元.约翰打算买 K ...

  3. NKOJ1828 Feed Ratios饲料调配

    题目 好题!高斯消元切了! (其实只是单纯地想吐槽这道出现在"高斯消元"专练里的题,暴搜能过,goudoubuxie"Gauss") 下面是暴搜: #pragm ...

  4. goose消元

    ps.改了标题 魔板 思路:按序消除变量,用当前行(i)[行i消\(x_i\)元素],消后面的每一行的i元素 最后按逆序回代值 注意若有i~n行i元素系数都为0说明没有唯一解(其余x的解跟i元素有关) ...

  5. usaco 购买饲料 && 修剪草坪

    购买饲料 Description 如约翰在镇上,沿着公路开车回家,他的家离起点有E公里.他顺便准备买K吨饲料回家.运送饲料是要花油钱的,如果他的车上有X吨饲料,行驶一公里需要X^2元,行驶D公里就 需 ...

  6. usaco silver

    大神们都在刷usaco,我也来水一水 1606: [Usaco2008 Dec]Hay For Sale 购买干草   裸背包 1607: [Usaco2008 Dec]Patting Heads 轻 ...

  7. USACO Section2.1 Healthy Holsteins 解题报告 【icedream61】

    holstein解题报告 --------------------------------------------------------------------------------------- ...

  8. USACO Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II 洛谷传送门 JDOJ 2671: USACO 2010 Jan Silver 2.Buying Feed, II ...

  9. USACO . Your Ride Is Here

    Your Ride Is Here It is a well-known fact that behind every good comet is a UFO. These UFOs often co ...

随机推荐

  1. 转:阿里旺旺导致python安装包失败的解决办法

    我以前使用web.py没事,今天运行时报错, mimetypes.init() # try to read system mime.types File "D:\ProgramFiles\p ...

  2. common tar command

    Compress tar -cvzf jy2653.2.tgz jy2653.2 Decompress tar -xvf jy2653.1.tgz

  3. UVA-10735 - Euler Circuit(混合欧拉回路输出)

    题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...

  4. 数据结构——HDU1312:Red and Black(DFS)

    题目描述 There is a rectangular room, covered with square tiles. Each tile is colored either red or blac ...

  5. 《University Calculus》-chaper8-无穷序列和无穷级数-p级数

    Q:定义p级数有如下形式,讨论p级数的敛散性.(p>o) 我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的.那么下面我们进行分情况讨论. 在这之前,我们有必要先引入一个检验敛散性 ...

  6. python 几种常见的测试框架

    1. unittest 参考文档: https://docs.python.org/3/library/unittest.html The unittest unit testing framewor ...

  7. Java IO流以及装饰器模式在其上的运用

    流概述 Java中,流是一种有序的字节序列,可以有任意的长度.从应用流向目的地称为输出流,从目的地流向应用称为输入流. Java的流族谱 Java的 java.io 包中囊括了整个流的家族,输出流和输 ...

  8. Spring task任务调度详解

    spring内部有一个task是Spring自带的一个设定时间自动任务调度 task使用的时候很方便,但是他能做的东西不如quartz那么的多! 可以使用注解和配置两种方式,配置的方式如下 引入Spr ...

  9. web —— jsp笔记

    cookies 的使用 1.首先确保客户机上允许使用cookie,一般在浏览器的 隐私 设置项里可以设置. 2.下面给出具体的例子 a)index.jsp中如果没注册过,让游客注册,如果注册了,拿出贮 ...

  10. Manacher思想 SCOI2013 密码

    关于$\mathrm{Manacher}$算法,网上介绍已经很全面 这里说一下自己的理解 这里的$rad$数组:$rad_i$表示以以位置i为中心的最长回文串的回文半径(不包括i这个点). 朴素的思想 ...