Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST === 
"The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein's secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary."

v - w^2 + x^3 - y^4 + z^5 = target

"For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn't exist then."

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

"Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or 'no solution' if there is no correct combination. Use the exact format shown below."

 
Sample Input
1 ABCDEFGHIJKL
11700519 ZAYEXIWOVU
3072997 SOUGHT
1234567 THEQUICKFROG
0 END
 
#include <stdio.h>
#include <iostream>
#include <string>
#include <string.h>
#include <cmath>
#include <math.h>
#include <algorithm>
using namespace std;

#define Maxn 1000

int aim;
int dir[Maxn];
bool visit[Maxn+1];
int Aim[Maxn];
string A;
bool flag;

bool cmp(int a,int b)
{
    return a > b;
}

void dfs(int T)
{
    if (flag)
    {
        return ;
    }
    if (T == 5)
    {
        if ( Aim[0] - pow(Aim[1],2) + pow(Aim[2],3) - pow(Aim[3],4) + pow(Aim[4],5) == aim)
        {
            flag = true;
            printf("%c%c%c%c%c\n",Aim[0]+'A'-1,Aim[1]+'A'-1,Aim[2]+'A'-1,Aim[3]+'A'-1,Aim[4]+'A'-1);
        }
        return ;
    }
    for(int i = 0; i < A.length(); i++)
    {
        if (!visit[i])
        {
            Aim[T] = dir[i];
            visit[i] = true;
            dfs(T+1);
            visit[i] = false;
        }
    }
}

int main()
{
    while(cin >> aim >> A)
    {
        if (aim == 0)
        {
            break;
        }
        flag = false;
        for (int i = 0; i < A.length(); i++)
        {
            dir[i] = A[i] - 'A' + 1;
        }
        sort(dir,dir+A.length(),cmp);
        for (int i = 0; i < A.length(); i++)
        {
            if (flag)
            {
                break;
            }
            memset(visit,false,sizeof(visit));
            Aim[0] = dir[i];
            visit[i] = true;
            dfs(1);
        }
        if (!flag)
        {
            printf("no solution\n");
        }
    }
}

  

 
Sample Output
LKEBA
YOXUZ
GHOST
no solution

hdu 1015 dfs的更多相关文章

  1. HDOJ(HDU).1015 Safecracker (DFS)

    HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...

  2. HDU 5143 DFS

    分别给出1,2,3,4   a, b, c,d个 问能否组成数个长度不小于3的等差数列. 首先数量存在大于3的可以直接拿掉,那么可以先判是否都是0或大于3的 然后直接DFS就行了,但是还是要注意先判合 ...

  3. hdu 1015 Safecracker 水题一枚

    题目链接:HDU - 1015 === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Klein s ...

  4. Snacks HDU 5692 dfs序列+线段树

    Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...

  5. hdu 1015(DFS)

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. HDU 1015 Safecracker【数值型DFS】

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 1015 Safecracker (DFS)

    题意:给一个数字n(n<=12000000)和一个字符串s(s<=17),字符串的全是有大写字母组成,字母的大小按照字母表的顺序,比如(A=1,B=2,......Z=26),从该字符串中 ...

  8. HDU 5877 dfs+ 线段树(或+树状树组)

    1.HDU 5877  Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...

  9. hdu 4751(dfs染色)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 思路:构建新图,对于那些两点连双向边的,忽略,然后其余的都连双向边,于是在新图中,连边的点是能不 ...

随机推荐

  1. 初尝 MVC4

    文章内容参考 http://www.cnblogs.com/leoo2sk/archive/2008/10/27/1320285.html 开发环境 VS2010 ,VS2010 开发 MVC4 需下 ...

  2. 回退符\b

    回退符\b #include <stdio.h> int main(){ printf("hello\b"); getchar(); getchar(); ; } 实验 ...

  3. 转载:Python正则表达式

    原文在  http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html 1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python ...

  4. Delphi 停靠技术的应用

    一.基础知识介绍 1.VCL组件的基础知识 在TWinControl类中有一个DockSite属性(boolean),它的作用是是否允许别的控件停靠在它的上面:在TControl类中有一个DragKi ...

  5. 【转】mysqldump

    原文地址:http://blog.chinaunix.net/uid-16844903-id-3411118.html 导出 导出全库备份到本地的目录 mysqldump -u$USER -p$PAS ...

  6. typedef与define

    一.typedef用法 typedef常用来定义一个标识符及关键字的别名,它生效是在语言编译过程,但它并不实际分配内存空间.typedef可以增强程序的可读性,以及标识符的灵活性,但它也有“非直观性” ...

  7. Docker Machine

    Docker Machine http://dockone.io/article/1485?utm_source=tuicool&utm_medium=referral 本地安装与使用 Doc ...

  8. jquery添加元素

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <head> ...

  9. mvc action 参数绑定——值提供器【学习笔记】

    每次http请求的各种数据(表单数据.url的数据.路由数据等等)都保存在不同的IValueProvider接口的实现类中. 而IValueProvider接口的实现类是通过ValueProvider ...

  10. linux tcp 好文

    http://blog.csdn.net/htttw/article/details/7521053