IPv6 neighbor discovery

By stretch | Thursday, August 28, 2008 at 5:03 a.m. UTC

Neighbor Discovery Protocol (NDP) can be conceptualized as a toolbox used by IPv6 hosts to carry out various link-local operations. NDP itself does not describe a wire-level protocol or packet structure, but rather it establishes directions for accomplishing routine tasks using certain algorithms and five ICMPv6 message types.

Many of the capabilities provided by NDP are very similar to those found in IPv4's ARP and ICMPv4, while others are new implementations available only under IPv6. RFC 4861 describes the nine functions of NDP in detail, but this article should suffice as a high-level review. A packet capture of various IPv6 Neighbor Discovery functions is available if you want to follow along with Wireshark.

Router Discovery

Whereas IPv4 hosts must rely on manual configuration or DHCP to provide the address of a default gateway, IPv6 hosts can automatically locate default routers on the link. This is accomplished through the use of two ICMPv6 messages: Router Solicitation (type 133) and Router Advertisement (type 134). When first joining a link, an IPv6 host multicasts a router solicitation to the all routers multicast group, and each router active on the link responds by sending a router advertisement with its address to the all nodes group.

Router advertisements indicate paths out of the local link, but they also specify additional information necessary to assist other NDP operations.

Prefix Discovery

One of the options typically carried by a router advertisement is the Prefix Information option (type 3). Each prefix information option lists an IPv6 prefix (subnet) reachable on the local link. Remember that it is not uncommon for multiple IPv6 prefixes to reside on the same link, and routers may include more than one prefix in each advertisement. A host which knows what prefixes are reachable on the link can communicate directly with destinations in those prefixes without passing its traffic through a router.

Parameter Discovery

Another option included in router advertisements is the MTU option (type 5), which informs hosts of the IP MTU to use. For example, this value is typically set to 1500 for Ethernet networks. However, not all link types have a standardized MTU size. Including this option ensures all hosts know the correct MTU to use.

Router advertisements also specify the default value hosts should use for the IPv6 hop count. This isn't an option, but a field built into the router advertisement message header.

Address Autoconfiguration

NDP provides mechanisms for a host to automatically configure itself with an address from a prefix learned from a local router through prefix discovery. This is done by concatenating a candidate learned prefix with the EUI-64 address of the host's interface. In this manner, a host can achieve stateless autoconfiguration.

Address Resolution

The function of address resolution was handled by ARP for IPv4, but is handled by ICMPv6 for IPv6. In a process very similar to router discovery, two ICMPv6 messages are used: Neighbor Solicitation (type 135) and Neighbor Advertisement (type 136). A host seeking the link layer address of a neighbor multicasts a neighbor solicitation and the neighbor (if online) responds with its link layer address in a neighbor advertisement.

Next-Hop Determination

As in IPv4, next-hop determination is simply a procedure for performing longest-match lookups on the host routing table and, for off-link destinations, the selection of a default router.

Neighbor Unreachability Detection

NDP is able to determine the reachability of a neighbor by examining clues from upper-layer protocols (for example, received TCP acknowledgments), or by actively reperforming address resolution (via ICMPv6) when certain thresholds are reached.

Duplicate Address Detection

When a host first joins a link, it multicasts neighbor solicitations for its own IPv6 address for a short period before attempting to use that address to communicate. If it receives a neighbor advertisement in response, the host realizes that another neighbor on the link is already using that address. The host will mark the address as a duplicate and will not use it on the link.

Note that this process is similar to IPv4 gratuitous ARP requests, but NDP elegantly allows for detection of two hosts with the same address before both hosts are actively sending traffic from the address.

Redirection

A fifth type of ICMPv6 message, the Redirect (type 137), is used by routers to either point hosts toward a more preferable router, or to indicate that the destination actually resides on link. ICMPv4 provides the same capability with its own redirect message.

About the Author

Jeremy Stretch is a networking engineer and the maintainer of PacketLife.net. He currently lives in the Raleigh-Durham area of North Carolina. Although employed full-time out of necessity, his true passion lies in improving the field of network engineering around the world. You can contact him by email or follow him on Twitter.

IPv6 neighbor discovery的更多相关文章

  1. RFC笔记—Neighbor Discovery for IP version 6 (IPv6)

    Router Solicitation Message Source Address An IP address assigned to the sending interface, or the u ...

  2. Neighbor Discovery Protocol Address Resolution Protocol

    https://en.wikipedia.org/wiki/Address_Resolution_Protocol The Address Resolution Protocol (ARP) is a ...

  3. [华三] IPv6技术白皮书(V1.00)

    IPv6技术白皮书(V1.00) http://www.h3c.com/cn/d_200802/605649_30003_0.htm H3C S7500E IPv6技术白皮书 关键词:IPv6,隧道 ...

  4. Openvswitch原理与代码分析(6):用户态流表flow table的操作

    当内核无法查找到流表项的时候,则会通过upcall来调用用户态ovs-vswtichd中的flow table. 会调用ofproto-dpif-upcall.c中的udpif_upcall_hand ...

  5. 从Openvswitch代码看网络包的旅程

    我们知道,Openvwitch可以创建虚拟交换机,而网络包可以通过虚拟交换机进行转发,并通过流表进行处理,具体的过程如何呢? 一.内核模块Openvswitch.ko的加载 OVS是内核态和用户态配合 ...

  6. On-demand diverse path computation for limited visibility computer networks

    In one embodiment, a source device detects a packet flow that meets criteria for multi-path forwardi ...

  7. Man手册--nmap

    目录 nmap使用手册 附录: nmap使用手册 附录: NMAP(1) Nmap Reference Guide NMAP(1) NAME nmap - Network exploration to ...

  8. (转) IPv6相关RFC

    转自http://blog.csdn.net/lucien_cc/article/details/12688477 IPv6 Spec RFC 2460 : Internet Protocol, Ve ...

  9. IPv6 tutorial – Part 8: Special addresses

    https://4sysops.com/archives/ipv6-tutorial-part-8-special-addresses/ The special IPv6 addresses disc ...

随机推荐

  1. 《深入理解linux内核》第二章 内存寻址

    三种不同的内存地址 逻辑地址(logical address)包含在linux实际指令中的地址,即分段式地址,是对应的硬件平台段式管理转换前地址由16位的段选择符(segment selector)和 ...

  2. Find the capitals

    Find the capitals Description: Instructions Write a function that takes a single string (word) as ar ...

  3. NOI2011道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1974  Solved: 550[Submit][Status ...

  4. Master Nginx(3) - Using the Mail Module

    Basic proxy service Authentication service Combining with memcached Interpreting log files Operating ...

  5. c语言诊断_断言库函数#include<assert.h>

    诊断<assert.h>  assert #include <assert.h> void assert(int exp); assert宏用于为程序增加诊断功能.当asser ...

  6. Fibonacci数列小程序

    Fibonacci数列小程序 问题分析:Fibonacci数列特征是前两项数均为1,从第三项起,前两项的和为第三项的数的数值用公式归纳起来为:f1=f2=1.f1=f1+f2.f2=f1+f2. 程序 ...

  7. 使用正则表达式匹配JS函数代码

    使用正则表达式匹配JS函数代码 String someFunction="init"; Pattern regex = Pattern.compile("function ...

  8. mysql 中文乱码的解决办法

    I would not suggest Richies answer, because you are screwing up the data inside the database. You wo ...

  9. 问题-[Delphi]无法设置断点

    问题现象: 今天突然发现不知何时起DELPHI7除了.dpr文件外,其余各Unit都无法设置断点.即在设计状态下设置了断点,在运行后出现的无效断点!百思不得其解...后查了许多资料,花了两个小时才搞好 ...

  10. 问题-[Delphi]在对GRID设置单击为编辑时,其他GRID可以,但有一个GRID不行?

    问题现象:在对GRID设置单击为编辑时,其他GRID可以,但有一个GRID不行?问题原因:在这个GRID中的单击事件可能不存在,可以测试一下有没有单击事件.解决方法:需要在GRID的上一个类中,放开单 ...