题目的意思已经说明了一切,次小生成树。。。
************************************************************************************
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int maxn = ;
const int oo = 0x7fffffff; int G[maxn][maxn], path[maxn][maxn];//path记录两点之间的最大边值
bool use[maxn][maxn];//记录是否是最小生成树上面的边 int Prim(int N)
{
    int dist[maxn], vis[maxn]={,}, pre[maxn];
    int i, ans = , T = N-;     for(i=; i<=N; i++)
    {
        pre[i] = ;
        dist[i] = G[][i];
    }
    while(T--)
    {
        int k = , mini = oo;         for(i=; i<=N; i++)
        {
            if(!vis[i] && mini > dist[i])
                mini = dist[i], k = i;
        }
        use[ pre[k] ][k] = use[k][ pre[k] ] = true;
        ans += mini; vis[k] = true;         for(i=; i<=N; i++)
        {
            if(vis[i] && k != i)
                path[k][i]=path[i][k] = max(path[pre[i]][i], mini);
            if(!vis[i] && dist[i] > G[k][i])
                dist[i] = G[k][i], pre[i] = k;
        }
    }     return ans;
}
int OK(int N)//判断是否有次小生成树
{
    for(int i=; i<=N; i++)
    for(int j=i+; j<=N; j++)
    {
        //如果有边的长度与最小树上的边相等,就说明不唯一了
        if(!use[i][j] && path[i][j]==G[i][j])
            return ;
    }     return ;
} int main()
{
    int T;     scanf("%d", &T);     while(T--)
    {
        int i, j, N, M, u, v, w;         scanf("%d%d", &N, &M);         for(i=; i<=N; i++)
        for(j=; j<=N; j++)
        {
            G[i][j] = (i == j ?  : oo);
            path[i][j] = ;
            use[i][j] = false;
        }         while(M--)
        {
            scanf("%d%d%d", &u, &v, &w);
            G[u][v] = G[v][u] = w;
        }         int ans = Prim(N);         if(OK(N) == )
            printf("Not Unique!\n");
        else
            printf("%d\n", ans);
    } } 

K - The Unique MST - poj 1679的更多相关文章

  1. (最小生成树 次小生成树)The Unique MST -- POJ -- 1679

    链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...

  2. Day5 - G - The Unique MST POJ - 1679

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  3. The Unique MST POJ - 1679 (次小生成树)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  4. The Unique MST POJ - 1679 次小生成树prim

    求次小生成树思路: 先把最小生成树求出来  用一个Max[i][j] 数组把  i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过   把没有使用过的一条边加 ...

  5. The Unique MST POJ - 1679 最小生成树判重

    题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...

  6. K - The Unique MST

    K - The Unique MST #include<iostream> #include<cstdio> #include<cstring> #include& ...

  7. K度限制MST poj 1639

    /* k度限制MST:有一个点的度<=k的MST poj 1639 要求1号点的度不超过k 求MST 我们先把1号点扔掉 跑MST 假设有sum个连通分支 然后把这sum个分支连到1上 就得到了 ...

  8. K - The Unique MST (最小生成树的唯一性)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  9. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

随机推荐

  1. servlet 配置到服务器

    最近写了个安卓项目,服务端用的servlet.因为第一次写java项目,写完如何发布不是太清除,于是把这回经理写出来,一来做个记录,二来也给和我同样经历的朋友一点启示. 首先配置你的java主机和你的 ...

  2. codevs4189字典(字典树)

    /* 本字典树较弱 只支持插入单词 查询单词. 特殊的 bool变量w 标记此字母是不是某个单词的结束 (然而这个题并没卵用) */ #include<iostream> #include ...

  3. 对SQL Server SQL语句进行优化的10个原则

    1.使用索引来更快地遍历表. 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的.在非群集索引下,数据在物理上随机存放在数据页上.合理的索引设计要建立在对各种查询的分析和预测上.一般来说:①.有大 ...

  4. Oracle解析 xml 记录一下(未完待续)

    Oracle解析 xml 记录一下. SQL> desc xmlparser; PROCEDURE FREEPARSER Argument Name                  Type  ...

  5. UIWebView执行JS语句

    示例网页: http://m.dianping.com/tuan/deal/moreinfo/11507109 移除该网页的返回按钮, 购买链接, 最底部的友情链接 代码: NSMutableStri ...

  6. ubuntu下安装Vmare Workstation,并安装mac补丁

    最近想学习一下关于ios方面的开发,但是苦于自己的电脑已经装了两个系统:一个win7,一个ubuntu.两系统均装在物理硬盘上,不想格盘,所以装个虚拟机玩玩.决定使用Vmare Workstation ...

  7. emmt html生成

    html:5  或 ! html:5 或!:用于HTML5文档类型 html:xt:用于XHTML过渡文档类型 html:4s:用于HTML4严格文档类型 常用过渡文档类型  html:xt  直接c ...

  8. centos node卸载

    1.通过包管理工具 如果是通过包管理工具安装的话,那就和包管理工具卸载 yum remove nodejs npm -y 2.手动 如果是通过手动安装:官方下载后安装 进入到安装的路径 cd /opt ...

  9. NoSQL数据库技术特性解析之文档数据库

    现今云计算的从业人员对NoSQL一词并不感到陌生,虽然很多技术人员都长期从事关系数据库的工作,但现在他们对NoSQL技术充满期待.对于企业来说,从关系型数据库到NoSQL数据库转变绝对是个需要深思熟虑 ...

  10. 使用gdb调试(转: http://www.cnblogs.com/luchen927/archive/2012/02/07/2339003.html)

    一般来说GDB主要调试的是C/C++的程序.要调试C/C++的程序,首先在编译时,我们必须要把调试信息加到可执行文件中.使用编译器(cc/gcc/g++)的 -g 参数可以做到这一点.如: > ...