http://poj.org/problem?id=1201

题意:给出N个整数区间[ai,bi],并且给出一个约束ci,( 1<= ci <= bi-ai+1),使得数组Z在区间[ai,bj]的个数>= ci个,求出数组Z的最小长度。

思路:建立差分约束系统。因为这里要求数组长度的最小值,要变为 x-y>=k的标准形式。

设数组 s[j] 表示数组 Z 区间[0,j]里包含的元素个数。所以 s[bi+1] - s[ai] >= ci,注意是 j+1,

隐含条件   0 <= s[i+1]-s[i] <= 1;

故差分约束系统为:

s[bi+1] - s[ai] >= ci;

s[i+1] - s[i] >= 0;

s[i] - s[i+1] >= -1;

然后邻接表建图求最长路。

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std; const int maxn = ;
const int INF = 0x3f3f3f3f;
struct node
{
int u,v,w;
int next;
}edge[maxn]; int n,p[maxn],cnt;
int Min,Max;
int dis[maxn],instack[maxn],vexcnt[maxn]; void add(int u, int v, int w)
{
cnt++;
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
} bool SPFA()
{
stack<int>st;
while(!st.empty()) st.pop();
memset(instack,,sizeof(instack));
memset(vexcnt,,sizeof(vexcnt));
for(int i = Min; i <= Max; i++)
dis[i] = -INF; st.push(Min);
dis[Min] = ;
instack[Min] = ;
vexcnt[Min]++; while(!st.empty())
{
int u = st.top();
st.pop();
instack[u] = ; for(int i = p[u]; i; i = edge[i].next)
{
if(dis[edge[i].v] < dis[u] + edge[i].w)
{
dis[edge[i].v] = dis[u] + edge[i].w;
if(!instack[edge[i].v])
{
instack[edge[i].v] = ;
st.push(edge[i].v);
vexcnt[edge[i].v]++;
if(vexcnt[edge[i].v] > n)
return false;
}
}
}
}
return true;
} int main()
{
int u,v,w;
scanf("%d",&n); cnt = ;
memset(p,,sizeof(p));
Min = INF,Max = -; for(int i = ; i < n; i++)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v+,w);
Min = min(Min,u);
Max = max(Max,v+);
}
for(int i = Min; i < Max; i++)
{
add(i,i+,);
add(i+,i,-);
}
SPFA();
printf("%d\n",dis[Max]-dis[Min]);
return ;
}

关于差分约束:

比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图

由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了

根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个

推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...

理解了这里之后,想做题还是比较有困难的,因为题目需要变形一下,不能单纯的算..

首先以poj3159为例,这个比较简单,就是给出两个点的最大差,然后让你求1到n的最大差,直接建图后用bellman或者spfa求最短路就可以过了

稍微难点的就是poj1364,因为他给出的不等式不是x-y<=k形式,有时候是大于号,这样需要我们去变形一下,并且给出的还是>,<没有等于,都要变形

再有就是poj1201,他要求出的是最长距离,那就要把形式变换成x-y>=k的标准形式

注意点:

1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1

如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可

2.如果权值为正,用dj,spfa,bellman都可以,如果为负不能用dj,并且需要判断是否有负环,有的话就不存在

Intervals(差分约束)的更多相关文章

  1. POJ1201 Intervals(差分约束)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 10966 Description You ...

  2. hdu 1384 Intervals (差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. poj 1716 Integer Intervals (差分约束 或 贪心)

    Integer Intervals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12192   Accepted: 514 ...

  4. zoj 1508 Intervals (差分约束)

    Intervals Time Limit: 10 Seconds      Memory Limit: 32768 KB You are given n closed, integer interva ...

  5. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  6. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  7. poj1201 Intervals——差分约束

    题目:http://poj.org/problem?id=1201 差分约束裸题: 设 s[i] 表示到 i 选了数的个数前缀和: 根据题意,可以建立以下三个限制关系: s[bi] >= s[a ...

  8. POJ 2101 Intervals 差分约束

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27746   Accepted: 10687 Description You ...

  9. poj1201/zoj1508/hdu1384 Intervals(差分约束)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Intervals Time Limit: 10 Seconds      Mem ...

  10. hdu 1384 Intervals (差分约束)

    /* 给你 n 个区间 [Ai, Bi],要求从每一个区间中至少选出 Ci 个数出来组成一个序列 问:满足上面条件的序列的最短长度是多少? 则对于 不等式 f(b)-f(a)>=c,建立 一条 ...

随机推荐

  1. 3、bootstrap3.0 栅格偏移 布局中的一个特产

    理解了栅格化,那么栅格偏移也相对容易理解了.v3的偏移分别有以下几种: offset:左外边距(margin-left): pull:右位移(right): push:左位移(left). 其中off ...

  2. Spring中 bean定义的parent属性机制的实现分析

    在XML中配置bean元素的时候,我们常常要用到parent属性,这个用起来很方便就可以让一个bean获得parent的所有属性 在spring中,这种机制是如何实现的?     对于这种情况 tra ...

  3. VS2010打不开VS2012 .NET MVC 工程,及打开后部分模块加载不正确的解决办法

    转自http://www.xuebuyuan.com/2042634.html 首先,如果sln打开不正确,用(notepad++)打开sln 比如 VS2010的前两行为: Microsoft Vi ...

  4. 学习java随笔第三篇:java的基本数据类型

    数据类型 一:整型 1.十进制 2.八进制 八进制数是满8进1,包含0~7的8个数字,在整数前面添加一个"0",表示是八进制数. 3.十六进制 十六进制数是满16进1,包含0~9, ...

  5. .NET设计模式(9):桥接模式(Bridge Pattern)

      .NET设计模式(9):桥接模式(Bridge Pattern)   桥接模式(Bridge Pattern) --.NET设计模式系列之九 年月 实现代码如下:..所谓抽象和实现沿着各自维度的变 ...

  6. 日志记录组件[Log4net]详细介绍

    转载:http://www.cnblogs.com/liwei6797/archive/2007/04/27/729679.html 因为工作中有要用到Log记录,找到一篇不错的文章,就转了过来. 一 ...

  7. oracle rowid 使用

    ROWID是数据的详细地址,通过rowid,oracle可以快速的定位某行具体的数据的位置. ROWID可以分为物理rowid和逻辑rowid两种.普通的堆表中的rowid是物理rowid,索引组织表 ...

  8. jquery table的隔行变色 鼠标事件

    一.鼠标事件 mouseover(function(){}); 鼠标移动到目标事件 mouseout(function(){}); 鼠标离开目标的事件 二.具体应用代码 <body> &l ...

  9. LCS最长公共子序列HDU1159

    最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...

  10. 读书笔记之 - javascript 设计模式 - 装饰者模式

    本章讨论的是一种为对象增添特性的技术,它并不使用创建新子类这种手段. 装饰者模式可以透明地把对象包装在具有同样接口的另一对象之中,这样一来,你可以给一些方法添加一些行为,然后将方法调用传递给原始对象. ...