http://poj.org/problem?id=1201

题意:给出N个整数区间[ai,bi],并且给出一个约束ci,( 1<= ci <= bi-ai+1),使得数组Z在区间[ai,bj]的个数>= ci个,求出数组Z的最小长度。

思路:建立差分约束系统。因为这里要求数组长度的最小值,要变为 x-y>=k的标准形式。

设数组 s[j] 表示数组 Z 区间[0,j]里包含的元素个数。所以 s[bi+1] - s[ai] >= ci,注意是 j+1,

隐含条件   0 <= s[i+1]-s[i] <= 1;

故差分约束系统为:

s[bi+1] - s[ai] >= ci;

s[i+1] - s[i] >= 0;

s[i] - s[i+1] >= -1;

然后邻接表建图求最长路。

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std; const int maxn = ;
const int INF = 0x3f3f3f3f;
struct node
{
int u,v,w;
int next;
}edge[maxn]; int n,p[maxn],cnt;
int Min,Max;
int dis[maxn],instack[maxn],vexcnt[maxn]; void add(int u, int v, int w)
{
cnt++;
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
} bool SPFA()
{
stack<int>st;
while(!st.empty()) st.pop();
memset(instack,,sizeof(instack));
memset(vexcnt,,sizeof(vexcnt));
for(int i = Min; i <= Max; i++)
dis[i] = -INF; st.push(Min);
dis[Min] = ;
instack[Min] = ;
vexcnt[Min]++; while(!st.empty())
{
int u = st.top();
st.pop();
instack[u] = ; for(int i = p[u]; i; i = edge[i].next)
{
if(dis[edge[i].v] < dis[u] + edge[i].w)
{
dis[edge[i].v] = dis[u] + edge[i].w;
if(!instack[edge[i].v])
{
instack[edge[i].v] = ;
st.push(edge[i].v);
vexcnt[edge[i].v]++;
if(vexcnt[edge[i].v] > n)
return false;
}
}
}
}
return true;
} int main()
{
int u,v,w;
scanf("%d",&n); cnt = ;
memset(p,,sizeof(p));
Min = INF,Max = -; for(int i = ; i < n; i++)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v+,w);
Min = min(Min,u);
Max = max(Max,v+);
}
for(int i = Min; i < Max; i++)
{
add(i,i+,);
add(i+,i,-);
}
SPFA();
printf("%d\n",dis[Max]-dis[Min]);
return ;
}

关于差分约束:

比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图

由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了

根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个

推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...

理解了这里之后,想做题还是比较有困难的,因为题目需要变形一下,不能单纯的算..

首先以poj3159为例,这个比较简单,就是给出两个点的最大差,然后让你求1到n的最大差,直接建图后用bellman或者spfa求最短路就可以过了

稍微难点的就是poj1364,因为他给出的不等式不是x-y<=k形式,有时候是大于号,这样需要我们去变形一下,并且给出的还是>,<没有等于,都要变形

再有就是poj1201,他要求出的是最长距离,那就要把形式变换成x-y>=k的标准形式

注意点:

1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1

如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可

2.如果权值为正,用dj,spfa,bellman都可以,如果为负不能用dj,并且需要判断是否有负环,有的话就不存在

Intervals(差分约束)的更多相关文章

  1. POJ1201 Intervals(差分约束)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 10966 Description You ...

  2. hdu 1384 Intervals (差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. poj 1716 Integer Intervals (差分约束 或 贪心)

    Integer Intervals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12192   Accepted: 514 ...

  4. zoj 1508 Intervals (差分约束)

    Intervals Time Limit: 10 Seconds      Memory Limit: 32768 KB You are given n closed, integer interva ...

  5. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  6. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  7. poj1201 Intervals——差分约束

    题目:http://poj.org/problem?id=1201 差分约束裸题: 设 s[i] 表示到 i 选了数的个数前缀和: 根据题意,可以建立以下三个限制关系: s[bi] >= s[a ...

  8. POJ 2101 Intervals 差分约束

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27746   Accepted: 10687 Description You ...

  9. poj1201/zoj1508/hdu1384 Intervals(差分约束)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Intervals Time Limit: 10 Seconds      Mem ...

  10. hdu 1384 Intervals (差分约束)

    /* 给你 n 个区间 [Ai, Bi],要求从每一个区间中至少选出 Ci 个数出来组成一个序列 问:满足上面条件的序列的最短长度是多少? 则对于 不等式 f(b)-f(a)>=c,建立 一条 ...

随机推荐

  1. 代码的坏味道(18)——依恋情结(Feature Envy)

    坏味道--依恋情结(Feature Envy) 特征 一个函数访问其它对象的数据比访问自己的数据更多. 问题原因 这种气味可能发生在字段移动到数据类之后.如果是这种情况,你可能想将数据类的操作移动到这 ...

  2. 面试题目——《CC150》排序与查找

    面试题11.1:给定两个排序后的数组A和B,其中A的末端有足够的缓冲空间容纳B.编写一个方法,将B合并入A并排序. package cc150.sort_search; public class Me ...

  3. linux中VI编辑器使用个人记录

    VI编辑器有三种编辑模式:命令模式.最后行模式.文本编辑模式 启动VI后进入的第一种模式是”命令模式“.从命令模式可进入最后行模式和编辑模式.而后两种模式之间不能直接切换.必须按ESC键退回到命令模式 ...

  4. WIndows系统下mysql-noinstall安装配置

    环境: Windowsmysql-noinstall-5.0.37-win32.zip 一.下载MySQL http://www.mysql.com/downloads 二.安装过程 1.解压缩mys ...

  5. GCD 和延时调用

    因为 Playground 不进行特别配置的话是无法在线程中进行调度的,因此本节中的示例代码需要在 Xcode 项目环境中运行.在 Playground 中可能无法得到正确的结果. GCD 是一种非常 ...

  6. Qt-剪切板

    ClipBoard 存在的意义 进程间数据共享. 方式 Drag And Drop: clipBoard的拖曳方式 app's ClipBoard 缺点 没有权限管理 在Model View中实现Dr ...

  7. 关于delete使用limit的一些注意事项

    在使用delete删除记录时,如果表里面存在多条相同的记录,但是此刻你只想删除一条记录,那么limit就派上了用场.但是使用limit的时候得注意: 如图,您如果想着删除第一个名字叫做张三的,如果你这 ...

  8. 管理 Machine - 每天5分钟玩转 Docker 容器技术(47)

    用 docker-machine 创建 machine 的过程很简洁,非常适合多主机环境.除此之外,Docker Machine 也提供了一些子命令方便对 machine 进行管理.其中最常用的就是无 ...

  9. java web 中有效解决中文乱码问题-pageEncoding与charset区别, response和request的setCharacterEncoding 区别

    这里先写几个大家容易搞混的编码设置代码: 在jsp代码中的头部往往有这两行代码 pageEncoding是jsp文件本身的编码contentType的charset是指服务器发送给客户端时的内容编码J ...

  10. CentOS安装Subversion 1.9.*版本客户端

    安装yum仓库 以下以CentOS6为例,其他类似 # vim /etc/yum.repos.d/wandisco-svn.rep [WandiscoSVN] name=Wandisco SVN Re ...