Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4312   Accepted: 1998

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111 1011 1101  

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0
第3种博弈,第一个赢,有几种方法。
#include<stdio.h>
int main()
{
int n,i,count,k,t;
int a[1000];
while(~scanf("%d",&n)&&n!=0)
{
count=t=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
t=t^a[i];
}
if(t!=0)
{
for(i=0;i<n;i++)
{
k=t^a[i];
if(k<a[i])
count++;
}
}
printf("%d\n",count);
}
return 0;
}
 

poj -2975 Nim的更多相关文章

  1. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  2. [原博客] POJ 2975 Nim 统计必胜走法个数

    题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...

  3. poj 2975 Nim(博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5232   Accepted: 2444 Description N ...

  4. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  5. POJ 2975 Nim(普通nim)

    题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...

  6. POJ 2975 Nim 尼姆博弈

    题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...

  7. POJ 2975 Nim(博弈)题解

    题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...

  8. poj 2975 Nim_最经典的Nim取石子

    题意:给你n堆石头,每次只能在一堆取最少一个石子,最后拿走最后一堆的为胜者,问胜者有多少种赢得取法 #include <iostream> #include<cstdio> u ...

  9. HDU 3404&POJ 3533 Nim积(二维&三维)

    (Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...

随机推荐

  1. <div>相关

    定义 <div>是一个块级元素[会自动换行] 用法 <div>可用于划分独立的一个块状区域,其内部内容显示在<div>的content部分内 结构 [盗用张图] 从 ...

  2. HTML 5 全局属性

    下面的全局属性可用于任何 HTML5 元素.HTML 5 全局属性NEW:HTML 5 中新的全局属性.属性 描述accesskey 规定访问元素的键盘快捷键class   规定元素的类名(用于规定样 ...

  3. 用Markdown优雅的渲染我们的网页

    认识 Markdown Markdown 是一种用来写作的轻量级「标记语言」,它用简洁的语法代替排版,而不像一般我们用的字处理软件 Word 或 Pages 有大量的排版.字体设置.它使我们专心于码字 ...

  4. Tomcat - java.lang.UnsupportedClassVersionError:Unsupported major.minor version 51.0 (unable to load class com.microsoft.sqlserver.jdbc.SQLS

    今天使用Tomcat连接sql Server 2008 enterprise的时候,报错: HTTP Status 500 - Servlet execution threw an exception ...

  5. 浅谈iOS开发的协议(protocol)和代理(delegate)

    协议和代理对于一个新手来说确实不讨好理解,也有很多的iOS开发的老手对此是懂非懂的.网上的很多博文只是讲了怎么使用,并没有说的很明白.下面我谈一下我的理解. 1.你要先搞明白,协议和代理为什么会出现, ...

  6. js小分享

    之前实现一些js代码时,总觉得无法下手,所以最近在学习一下特别细的知识点,分享笔记.嘻嘻,偷个小懒,我把自己的笔记拍个照片就不打字了.嘎嘎,放心放心,自觉得字写的还算ok的啦- 表示家里的老弟玩游戏, ...

  7. 初学者自学笔记-this的用法

    请注意:这是自学者的笔记,只是个人理解,并非技术分享,如有错误请指正. "this"的意思,简单而言,就是"这个",也就是"当前".谁调用它 ...

  8. Nodejs简单验证码ccap安装

    首先要求: node npm 安装时如果提示npm-gyp失败,可进行如下操作: 确认python版本2.7+ 安装npm install ccap 如果失败,尝试npm install ccap@0 ...

  9. ios开发中加载的image无法显示

    昨天遇到一个较奇葩的问题,imageName加载的图片显示不出来,网上查了好多资料还是没找到解决的方法: 之前图片是放在项目中SupportingFiles文件下的,怎么加载都能显示图片,于是将图片拿 ...

  10. 【原创】Android 从一个Activity跳转到另外一个Activity

    Android四大组件activity使用,实现两个activity之间的跳转 基本流程:创建两个activity-将其中一个activity中组件作为事件源-通过组件事件的处理借助intent对象实 ...