Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4312   Accepted: 1998

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111 1011 1101  

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0
第3种博弈,第一个赢,有几种方法。
#include<stdio.h>
int main()
{
int n,i,count,k,t;
int a[1000];
while(~scanf("%d",&n)&&n!=0)
{
count=t=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
t=t^a[i];
}
if(t!=0)
{
for(i=0;i<n;i++)
{
k=t^a[i];
if(k<a[i])
count++;
}
}
printf("%d\n",count);
}
return 0;
}
 

poj -2975 Nim的更多相关文章

  1. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  2. [原博客] POJ 2975 Nim 统计必胜走法个数

    题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...

  3. poj 2975 Nim(博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5232   Accepted: 2444 Description N ...

  4. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  5. POJ 2975 Nim(普通nim)

    题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...

  6. POJ 2975 Nim 尼姆博弈

    题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...

  7. POJ 2975 Nim(博弈)题解

    题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...

  8. poj 2975 Nim_最经典的Nim取石子

    题意:给你n堆石头,每次只能在一堆取最少一个石子,最后拿走最后一堆的为胜者,问胜者有多少种赢得取法 #include <iostream> #include<cstdio> u ...

  9. HDU 3404&POJ 3533 Nim积(二维&三维)

    (Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...

随机推荐

  1. wps批量使标题靠文档左边

  2. IE浏览器div错乱问题

    这个问题属于各浏览器的兼容问题,有时候在其他浏览器中,html页面布局都是正常显示,唯独IE浏览器的div块布局错乱了,可能是html文件上面的报头标准出现错误. 就是一段报头,告诉浏览器,你的文档以 ...

  3. 线程池ThreadPoolExecutor使用简介

    一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...

  4. window.clearInterval与window.setInterval的用法(

    window.setInterval() 功能:按照指定的周期(以毫秒计)来调用函数或计算表达式. 语法:setInterval(code,millisec) 解释:code:在定时时间到时要执行的J ...

  5. js Module模式

    // 创建一个立即调用的匿名函数表达式// return一个变量,其中这个变量里包含你要暴露的东西// 返回的这个变量将赋值给counter,而不是外面声明的function自身 var counte ...

  6. Codeforces 553D Nudist Beach(图论,贪心)

    Solution: 假设已经选了所有的点. 如果从中删掉一个点,那么其它所有点的分值只可能减少或者不变. 如果要使若干步删除后最小的分值变大,那么删掉的点集中肯定要包含当前分值最小的点. 所以每次删掉 ...

  7. ES6-个人学习笔记一--let和const

    es6已经推出一段时间了,虽然在兼容和应用上还有不少的难题,但是其提供的未来前端代码编程的发展趋势和一些好用的功能还是很吸引人的,因此个人买了'阮一峰'先生的es6入门,希望对其有一个了解和学习,本系 ...

  8. web服务器的卸载

     在卸载这三个应用之前,咱们可以在终端通过运行“dkpg -l”来查看软件状态. 方法一:选择dpkg -P来卸载软件. 因为dpkg --remove只是删除安装的文件,但不删除配置文件.而dpkg ...

  9. centos 7.0防火墙导致vagrant端口映射失败

    在vagrant上部署了centos7.0后,Vagrantfile端口转发设置后,宿主机访问客户机站点还是无法访问,问题出在:centos7.0以上版本默认会安装firewalld防火墙, fire ...

  10. gocode 安装

    1.安装git,将git/bin添加至PATH 2.执行go get -u github.com/nsf/gocode 3.在%GOPATH%/bin/下会生成gocode.exe