poj -2975 Nim
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4312 | Accepted: 1998 |
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.
A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.
Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111 1011 1101
There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.
Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.
Sample Input
3
7 11 13
2
1000000000 1000000000
0
Sample Output
3
0
第3种博弈,第一个赢,有几种方法。
#include<stdio.h>
int main()
{
int n,i,count,k,t;
int a[1000];
while(~scanf("%d",&n)&&n!=0)
{
count=t=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
t=t^a[i];
}
if(t!=0)
{
for(i=0;i<n;i++)
{
k=t^a[i];
if(k<a[i])
count++;
}
}
printf("%d\n",count);
}
return 0;
}
poj -2975 Nim的更多相关文章
- POJ 2975 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...
- [原博客] POJ 2975 Nim 统计必胜走法个数
题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...
- poj 2975 Nim(博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5232 Accepted: 2444 Description N ...
- poj 2975 Nim 博弈论
令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...
- POJ 2975 Nim(普通nim)
题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...
- POJ 2975 Nim 尼姆博弈
题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...
- POJ 2975 Nim(博弈)题解
题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...
- poj 2975 Nim_最经典的Nim取石子
题意:给你n堆石头,每次只能在一堆取最少一个石子,最后拿走最后一堆的为胜者,问胜者有多少种赢得取法 #include <iostream> #include<cstdio> u ...
- HDU 3404&POJ 3533 Nim积(二维&三维)
(Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...
随机推荐
- volatile用处说明
在JDK1.2之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的.而随着JVM的成熟和优化,现在在多线程环境下volatile关键字的使用变得非常重要. 在当前 ...
- github上建站和使用markdown写文章
积累了那么久,终于成功搭建了github上的个人网站.虽然方法有点巧妙.不是还是建成了 同时学会用markdown写基本的文章.感觉还可以.附带我的github上的静态页面网站的网址:http://z ...
- (转)Spring读书笔记-----Spring核心机制:依赖注入
Java应用(从applets的小范围到全套n层服务端企业应用)是一种典型的依赖型应用,它就是由一些互相适当地协作的对象构成的.因此,我们说这些对象间存在依赖关系.加入A组件调用了B组件的方法,我们就 ...
- Sqlserver通过链接服务器访问Oracle的解决办法
转自http://blog.sina.com.cn/s/blog_614b6f210100t80r.html 一.创建sqlserver链接服务(sqlserver链接oracle) 首先sqlse ...
- 对于EditText的详细用法
EditText这个控件对于每一个Android开发者来说都是再熟悉不过了,但是,为什么有的人的EditText可以表现的那么好看,而刚入学Android的程序员来讲却丑到爆.这就充分的说明对于Edi ...
- Android SQLite ORM框架greenDAO在Android Studio中的配置与使用
博客: 安卓之家 微博: 追风917 CSDN: 蒋朋的家 简书: 追风917 博客园: 追风917 # 说明 greenDAO是安卓中处理SQLite数据库的一个开源的库,详情见其官网:我是官网 详 ...
- css - a:hover变色问题
今天在帮我们学校做网站的时候,由于在css这里不是很擅长,过程中发现一个问题,a:hover的时候,字体的颜色不变.后来才发现将a和div的嵌套的问题, 我的css代码为: .left_box .lb ...
- .Net下的进程间的通讯 -- Windows消息队列
Windows 消息队列(MSMQ),是微软Windows2000以上的操作系统的一个服务,可以提供在计算机间消息的可靠传输,用来在两个进程间进行异步通讯最合适不过了.在.Net中有一个Message ...
- ListPreference之entries和entryValues
在使用PreferenceActivity时,碰到配置文件的ListPreference有两个属性android:entries,android:entryValues.这两个属性其实就和html的o ...
- JavaScript学习总结【10】、DOM 事件
DOM 事件是 JS 中比较重要的一部分知识,所谓事件,简单理解就是用户对浏览器进行的一个操作.事件在 Web 前端领域有很重要的地位,很多重要的知识点都与事件有关,所以学好 JS 事件可以让我们在J ...