poj -2975 Nim
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4312 | Accepted: 1998 |
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.
A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.
Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111 1011 1101
There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.
Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.
Sample Input
3
7 11 13
2
1000000000 1000000000
0
Sample Output
3
0
第3种博弈,第一个赢,有几种方法。
#include<stdio.h>
int main()
{
int n,i,count,k,t;
int a[1000];
while(~scanf("%d",&n)&&n!=0)
{
count=t=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
t=t^a[i];
}
if(t!=0)
{
for(i=0;i<n;i++)
{
k=t^a[i];
if(k<a[i])
count++;
}
}
printf("%d\n",count);
}
return 0;
}
poj -2975 Nim的更多相关文章
- POJ 2975 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...
- [原博客] POJ 2975 Nim 统计必胜走法个数
题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...
- poj 2975 Nim(博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5232 Accepted: 2444 Description N ...
- poj 2975 Nim 博弈论
令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...
- POJ 2975 Nim(普通nim)
题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...
- POJ 2975 Nim 尼姆博弈
题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...
- POJ 2975 Nim(博弈)题解
题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...
- poj 2975 Nim_最经典的Nim取石子
题意:给你n堆石头,每次只能在一堆取最少一个石子,最后拿走最后一堆的为胜者,问胜者有多少种赢得取法 #include <iostream> #include<cstdio> u ...
- HDU 3404&POJ 3533 Nim积(二维&三维)
(Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...
随机推荐
- media queries 媒体查询使用
media queries 翻译过来就是媒体查询,media 指的媒体类型.那么有哪些类型呢,常用的有 screen(屏幕).打印(print),个人理解就是它所在的不同终端. 常用的用法:1,< ...
- xml--小结②XML的基本语法
二.XML的基本语法1.文档声明:作用:用于标识该文档是一个XML文档.注意事项:声明必须出现在文档的第一行(之前连空行都不能有,也不能有任何的注释) 最简单的XML声明:<?xml versi ...
- pat_1009
1009. 说反话 (20) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 给定一句英语,要求你编写程序,将句中 ...
- Jquery全选与反选checkbox(代码示例)
今天在公司要实现操作权限的功能,需要根据左边的树,选择一项,判断右边的操作权限,例如,增加,修改,删除,查看等按钮的显示与隐藏: 这个功能实现思路如下: 1.操作权限:增加.修改等按钮的ID和Text ...
- Object-C Init
上一篇为Object-C类实现 我们可以创建一个init方法用来给我们的实例变量设置初始化值: - (id)init { if(self = [super init]) { [self setCapt ...
- ecshop---京东手机模板js的eval产生冲突的解决方法。
今天弄ecshop手机模板的时候,发现首页的广告图出不来,js报错
- Shell脚本——中继DHCP服务器自动部署
详细说明参照: (四)跟我一起玩Linux网络服务:DHCP服务配置之中继代理 vm1的脚本是: #! /bin/bash HIPSEG="10.10.10" SIPSEG=&qu ...
- C#如何释放已经加载的图片 (转)
使用Image.FromFile取磁盘上的图片时,这个方法会锁定图片文件,而且会导致内存占用增大, 有几种方法解决: 一:将Image类转换成Bitmap类 System.Drawing.Image ...
- HTML5储存
1.sessionStorage 特点:关闭浏览器(或标签页)后数据就不存在了.但刷新页面或使用“前进”.“后退按钮”后sessionStorage仍然存在: sessionStorage每个窗口的值 ...
- Express使用html模板
express默认使用jade模板,可以配置让其支持使用ejs或html模板. 1. 安装ejs 在项目根目录安装ejs. npm install ejs 2.引入ejs var ejs = requ ...