动态规划(DP计数):HDU 5121 Just A Mistake
Once, he came up with a simple algorithm for finding the maximal independent set in trees by mistake.
A tree is a connected undirected graph without cycles, and an independent set is subset of the vertex set which contains no adjacent vertex pairs.
Suppose that the tree contains N vertices, conveniently numbered by 1,2, . . . , N. First, Matt picks a permutation p1, p2, . . . , pN of {1, 2, 3, . . . , N } randomly and uniformly.
After picking the permutation, Matt does the following procedure.
1.Set S = ∅.
2.Consider the vertex p1, p2, . . . , pN accordingly. For vertex pi, if and only if there is no vertex in S which is adjacent to pi, add vertex pi into S.
3.Output the set S.
Clearly the above algorithm does not always output the maximal independent set. Matt would like to know the expected size of set S instead.
Input
For each test case, the first line contains an integer N (1 ≤ N ≤ 200), indicating the number of vertices in the graph.
Each of the following N - 1 lines contains two integers u, v (1 ≤ u, v ≤ N ) indicating an edge between u and v. You may assume that all the vertices are connected.
Output
(the expected size of independent set) × N! mod (109 + 7)
Sample Input
2
4
1 2
1 3
1 4
3
1 2
2 3
Sample Output
Case #1: 60
Case #2: 10
Hint
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=,Mod=(int)1e9+;
int cnt,fir[N],to[N*],nxt[N*];
void addedge(int a,int b){
nxt[++cnt]=fir[a];to[fir[a]=cnt]=b;
nxt[++cnt]=fir[b];to[fir[b]=cnt]=a;
}
typedef long long LL;
#define clr(x) memset(x,0,sizeof(x))
LL ans,dp[N][N],tmp[N],sum[N],fac[N],c[N][N];
LL Inv(LL x){return x==?:(Mod-Mod/x)*Inv(Mod%x)%Mod;}
void Prepare(){
fac[]=;
for(int i=;i<N;i++)
fac[i]=fac[i-]*i%Mod;
for(int i=;i<N;i++)for(int j=;j<=i;j++)
c[i][j]=fac[i]*Inv(fac[j]*fac[i-j]%Mod)%Mod;
} int fa[N],sz[N];
void Update(int x,int y){
clr(sum);clr(tmp);
for(int i=;i<=sz[y];i++)
sum[i]=(sum[i-]+dp[y][i])%Mod; for(int i=;i<=sz[x];i++)
for(int j=;j<=sz[y];j++){
LL a=dp[x][i]*(((fac[sz[y]]-sum[j])%Mod+Mod)%Mod)%Mod;
LL b=c[i+j-][j]*c[sz[x]+sz[y]-i-j][sz[y]-j]%Mod;
(tmp[i+j]+=a*b%Mod)%=Mod;
}
sz[x]+=sz[y];
for(int i=;i<=sz[x];i++)
dp[x][i]=tmp[i];
} void DP(int x,int f){
if(fa[x]==f)return;
clr(dp[x]);sz[x]=;
fa[x]=f;dp[x][]=;
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=f){
DP(to[i],x);
Update(x,to[i]);
}
} int st[N],top;
void DFS(int x,int f){
st[++top]=x;
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=f)DFS(to[i],x);
}
int T,cas,n,a,b;
void Init(){
clr(fir);clr(fa);
top=ans=cnt=;
} int main(){
Prepare();
scanf("%d",&T);
while(T--){
Init();
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&a,&b);
addedge(a,b);
}
DFS(,);
for(int i=;i<=n;i++){
DP(st[i],-);
for(int j=;j<=n;j++)
(ans+=dp[st[i]][j])%=Mod;
}
printf("Case #%d: %lld\n",++cas,ans);
}
return ;
}
动态规划(DP计数):HDU 5121 Just A Mistake的更多相关文章
- HDU 5121 Just A Mistake
Just A Mistake Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) ...
- 动态规划(DP计数):HDU 5116 Everlasting L
Matt loves letter L.A point set P is (a, b)-L if and only if there exists x, y satisfying:P = {(x, y ...
- HDU 4055 The King’s Ups and Downs(DP计数)
题意: 国王的士兵有n个,每个人的身高都不同,国王要将他们排列,必须一高一矮间隔进行,即其中的一个人必须同时高于(或低于)左边和右边.问可能的排列数.例子有1千个,但是最多只算到20个士兵,并且20个 ...
- HDU 4055 Number String(DP计数)
题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...
- 动态规划dp
一.概念:动态规划dp:是一种分阶段求解决策问题的数学思想. 总结起来就一句话:大事化小,小事化了 二.例子 1.走台阶问题 F(10):10级台阶的走法数量 所以:F(10)=F(9)+F(8) F ...
- 【POJ1952】逢低吸纳 dp+计数
题目大意:给定一个有 N 个数的序列,求其最长下降子序列的长度,并求出有多少种不同的最长下降子序列.(子序列各项数值相同视为同一种) update at 2019.4.3 题解:求最长下降子序列本身并 ...
- 算法-动态规划DP小记
算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...
- Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)
题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...
- 动态规划(DP计数):HDU 5117 Fluorescent
Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt fi ...
随机推荐
- swift-01-利用元组判断字符串出现次数
//问题的提出:有一个字符串 array = ["1","2","4","4","2"," ...
- HTML<label> 标签的 for 属性
定义和用法 for 属性规定 label 与哪个表单元素绑定. 隐式和显式的联系 标记通常以下面两种方式中的一种来和表单控件相联系:将表单控件作为标记标签的内容,这样的就是隐式形式,或者为 <l ...
- [转]CSS 模块
CSS 模块 如果你想知道 CSS 最近发展的转折点,你应该选择去观看 Christopher Chedeau 在2014年11月的 NationJS 大会上做的名称为 CSS in JS 的分享.不 ...
- References & the Copy-Constructor
1 There are certain rules when using references: (Page 451) A reference must be initialized when it ...
- IOS 学习笔记 2015-03-24 OC-API-网络访问-案例一
// // WPSuggest.h // OC-API-网络访问 // // Created by wangtouwang on 15/3/24. // Copyright (c) 2015年 wan ...
- Redis 3.0.2集群搭建以及相关问题汇总
Redis3 正式支持了 cluster,是为了解决构建redis集群时的诸多不便 (1)像操作单个redis一样操作key,不用操心key在哪个节点上(2)在线动态添加.删除redis节点,不用停止 ...
- 【原创】Linux 增加系统调用
Linux 增加系统调用大致步骤: 1.下载好内核文件,在内核源文件中添加好自己的调用函数. 2.编译内核 3.验证. 一.在内核源文件中增加自己的函数 首先将内核文件移至/usr/src/下并解 ...
- 小笔记(二):php数组
一.对于一二维数组重新组合为另一个二维数组,根据键值名称对一个二维数组进行重新组合例: /*$paramArray=array( * 'a'=>array('0'=>'1','1'=> ...
- POJ 3349 Snowflake Snow Snowflakes Hash
题目链接: http://poj.org/problem?id=3349 #include <stdio.h> #include <string.h> #include < ...
- 如何快速正确的安装 Ruby, Rails 运行环境-b
对于新入门的开发者,如何安装 Ruby, Ruby Gems 和 Rails 的运行环境可能会是个问题,本页主要介绍如何用一条靠谱的路子快速安装 Ruby 开发环境.次安装方法同样适用于产品环境! 系 ...