Power Stations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2164    Accepted Submission(s): 626
Special Judge

Problem Description
There
are N towns in our country, and some of them are connected by
electricity cables. It is known that every town owns a power station.
When a town’s power station begins to work, it will provide electric
power for this town and the neighboring towns which are connected by
cables directly to this town. However, there are some strange bugs in
the electric system –One town can only receive electric power from no
more than one power station, otherwise the cables will be burned out for
overload.

The power stations cannot work all the time. For each
station there is an available time range. For example, the power station
located on Town 1 may be available from the third day to the fifth day,
while the power station on Town 2 may be available from the first day
to the forth day. You can choose a sub-range of the available range as
the working time for each station. Note that you can only choose one
sub-range for each available range, that is, once the station stops
working, you cannot restart it again. Of course, it is possible not to
use any of them.

Now you are given all the information about the
cable connection between the towns, and all the power stations’
available time. You need to find out a schedule that every town will get
the electricity supply for next D days, one and only one supplier for
one town at any time.

 
Input
There
are several test cases. The first line of each test case contains three
integers, N, M and D (1 <= N <= 60, 1 <= M <= 150, 1 <= D
<= 5), indicating the number of towns is N, the number of cables is
M, and you should plan for the next D days.

Each of the next M
lines contains two integers a, b (1 <= a, b <= N), which means
that Town a and Town b are connected directly. Then N lines followed,
each contains two numbers si and ei, (1 <= si <= ei <= D)
indicating that the available time of Town i’s power station is from the
si-th day to the ei-th day (inclusive).

 
Output
For
each test case, if the plan exists, output N lines. The i-th line
should contain two integers ui and vi, indicating that Town i’s power
station should work from the ui-th day to vi-day (inclusive). If you
didn’t use this power station at all, set ui = vi = 0.

If the plan doesn’t exist, output one line contains “No solution” instead.

Note that the answer may not be unique. Any correct answers will be OK.

Output a blank line after each case.

 
Sample Input
3 3 5
1 2
2 3
3 1
1 5
1 5
1 5

4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5
 
Sample Output
 
1 5
0 0
0 0

 
No solution
 
  就是没看题导致WA1发。
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int maxnode=;
int s[maxn],t[maxn],belong[maxn],ans[maxn];
struct DLX{
int L[maxnode],R[maxnode],U[maxnode],D[maxnode];
int cnt,Row[maxnode],Col[maxnode],C[maxn],H[maxn];
void Init(int n,int m){
for(int i=;i<=m;i++){
L[i]=i-;R[i]=i+;
U[i]=D[i]=i;C[i]=;
}
cnt=m;L[]=m;R[m]=;
for(int i=;i<=n;i++)H[i]=;
} void Link(int r,int c){
Row[++cnt]=r;C[Col[cnt]=c]+=; U[cnt]=c;D[cnt]=D[c];U[D[c]]=cnt;D[c]=cnt; if(!H[r])H[r]=L[cnt]=R[cnt]=cnt;
else R[cnt]=R[H[r]],L[cnt]=H[r],L[R[cnt]]=cnt,R[L[cnt]]=cnt;
} void Delete(int c){
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
--C[Col[j]],U[D[j]]=U[j],D[U[j]]=D[j];
} void Resume(int c){
L[R[c]]=c;R[L[c]]=c;
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++C[Col[j]],U[D[j]]=j,D[U[j]]=j;
} bool Solve(){
if(!R[])return true;
int p=R[];
for(int i=R[p];i;i=R[i])
if(C[p]>C[i])
p=i; Delete(p);
for(int i=D[p];i!=p;i=D[i]){
if(ans[belong[Row[i]]])continue;
for(int j=R[i];j!=i;j=R[j])
Delete(Col[j]); ans[belong[Row[i]]]=Row[i];
if(Solve())
return true;
ans[belong[Row[i]]]=;
for(int j=L[i];j!=i;j=L[j])
Resume(Col[j]);
}
Resume(p);
return false;
}
}dlx; int L[maxn],R[maxn];
bool G[maxn][maxn]; int main(){
int a,b,N,M,D,tot;
while(scanf("%d%d%d",&N,&M,&D)!=EOF){
memset(G,,sizeof(G));
while(M--){
scanf("%d%d",&a,&b);
G[a][b]=true;
G[b][a]=true;
} tot=;
for(int i=;i<=N;i++){
scanf("%d%d",&s[i],&t[i]);
tot+=(t[i]-s[i]+)*(t[i]-s[i]+)/;
G[i][i]=true;
} dlx.Init(tot,N*D);
memset(ans,,sizeof(ans));
for(int x=,p=;x<=N;x++)
for(int l=s[x];l<=t[x];l++)
for(int r=l;r<=t[x];r++){
++p;L[p]=l;R[p]=r;belong[p]=x;
for(int j=l;j<=r;j++)
for(int y=;y<=N;y++)
if(G[x][y])dlx.Link(p,N*(j-)+y);
}
if(dlx.Solve()){
for(int i=;i<=N;i++)
printf("%d %d\n",L[ans[i]],R[ans[i]]);
}
else
printf("No solution\n");
printf("\n");
}
return ;
}

搜索(DLX):HDU 3663 Power Stations的更多相关文章

  1. [DLX精确覆盖] hdu 3663 Power Stations

    题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...

  2. Power Stations HDU - 3663

    我为什么T了.... Power Stations Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  3. 【HDU 3663】 Power Stations

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3663 [算法] 先建图,然后用Dancing Links求解精确覆盖,即可 [代码] #inclu ...

  4. HDU 6034---Balala Power!(搜索+贪心)

    题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...

  5. hdu 3663 DLX

    思路:把每个点拆成(d+1)*n列,行数为可拆分区间数.对所有的有i号点拆分出来的行都要建一条该行到i列的边,那么就能确保有i号点拆出来的行只能选择一行. #include<set> #i ...

  6. 【HDOJ】Power Stations

    DLX.针对每个城市,每个城市可充电的区间构成一个plan.每个决策由N*D个时间及N个精确覆盖构成. /* 3663 */ #include <iostream> #include &l ...

  7. 搜索(DLX): POJ 3074 3076 Sudoku

    POJ 3074 : Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller ...

  8. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

  9. HDU 4318 Power transmission(最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=4318 题意: 给出运输路线,每条路线运输时都会损失一定百分比的量,给定起点.终点和初始运输量,问最后到达终点时最 ...

随机推荐

  1. teamview centos 配置

    1.下载teamview centos版本,本人喜欢tar.gz版本,但是官网只有rpm版本,附件中即为官网下载的teamview11 官方下载地址:https://www.teamviewer.co ...

  2. ES6数组去重

    今天五一,在出去玩之前赶紧写篇博客,时刻不要忘记学习^_^!! 提到数组去重,想必大家都不陌生,会的同学可能噼里啪啦写出好几个,下面来看看之前常见的去重代码: 'use strict'; var ar ...

  3. js兼容各个浏览器的复制功能

    看似简单的复制功能,用js做起来竟然遇到各种情况.刚开始在网上搜索到复制功能的几种实现方法,但是都不兼容.最后还是用的插件代码如下 html模板 <tr> <td>1</ ...

  4. 关于jquery的 $("form").serialize()和 new FormData表单序列化

    $("form").serialize()和 new FormData($('#uploadForm')[0])都是序列化表单,实现表单的异步提交,但是二者有区别 首先,前者,只能 ...

  5. CentOS 6.5 64位,调整分区大小

    调整硬盘分区大小 想增加root空间,减少home空间. 1.查看硬盘使用情况. [root@npm ~]# df -h Filesystem Size Used Avail Use% Mounted ...

  6. INSERT INTO SELECT FROM 这语句怎么用

    如果两表字段相同,则可以直接这样用. insert into table_a select * from table_b 如果两表字段不同,a表需要b中的某几个字段即可,则可以如下使用: insert ...

  7. Alljoyn 概述(3)

    开发工具 • scons:一个 Python写的自动化构建工具,是对 gnu make 改进的替代工具 • D-Feet:一个D-Bus调试工具 • C++ Code Generator Tool ( ...

  8. 【转】iOS25彩票 幸运转盘

    原文 : http://www.it165.net/pro/html/201409/21216.html 最终效果图: 各个view的关系图: 背景圆盘(需穴ky"http://www.it ...

  9. 在Mac OS上搭建本地服务器

    我们在做网络编程的时候一般是需要有网络环境的,这样可以边写边测试达到很高的效率.但有些时候我们由于很多原因我们的电脑无法连接到网络,这时就会感觉很不自在,所以今天在这里教大家怎么用自己电脑作服务器. ...

  10. centos 6.x 安装redis

    1.yum 安装 yum install redis 如果提示找不到包的话  可以yum install epel-release   先安装epel第三方库 2.源码安装 https://redis ...