Power Stations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2164    Accepted Submission(s): 626
Special Judge

Problem Description
There
are N towns in our country, and some of them are connected by
electricity cables. It is known that every town owns a power station.
When a town’s power station begins to work, it will provide electric
power for this town and the neighboring towns which are connected by
cables directly to this town. However, there are some strange bugs in
the electric system –One town can only receive electric power from no
more than one power station, otherwise the cables will be burned out for
overload.

The power stations cannot work all the time. For each
station there is an available time range. For example, the power station
located on Town 1 may be available from the third day to the fifth day,
while the power station on Town 2 may be available from the first day
to the forth day. You can choose a sub-range of the available range as
the working time for each station. Note that you can only choose one
sub-range for each available range, that is, once the station stops
working, you cannot restart it again. Of course, it is possible not to
use any of them.

Now you are given all the information about the
cable connection between the towns, and all the power stations’
available time. You need to find out a schedule that every town will get
the electricity supply for next D days, one and only one supplier for
one town at any time.

 
Input
There
are several test cases. The first line of each test case contains three
integers, N, M and D (1 <= N <= 60, 1 <= M <= 150, 1 <= D
<= 5), indicating the number of towns is N, the number of cables is
M, and you should plan for the next D days.

Each of the next M
lines contains two integers a, b (1 <= a, b <= N), which means
that Town a and Town b are connected directly. Then N lines followed,
each contains two numbers si and ei, (1 <= si <= ei <= D)
indicating that the available time of Town i’s power station is from the
si-th day to the ei-th day (inclusive).

 
Output
For
each test case, if the plan exists, output N lines. The i-th line
should contain two integers ui and vi, indicating that Town i’s power
station should work from the ui-th day to vi-day (inclusive). If you
didn’t use this power station at all, set ui = vi = 0.

If the plan doesn’t exist, output one line contains “No solution” instead.

Note that the answer may not be unique. Any correct answers will be OK.

Output a blank line after each case.

 
Sample Input
3 3 5
1 2
2 3
3 1
1 5
1 5
1 5

4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5
 
Sample Output
 
1 5
0 0
0 0

 
No solution
 
  就是没看题导致WA1发。
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int maxnode=;
int s[maxn],t[maxn],belong[maxn],ans[maxn];
struct DLX{
int L[maxnode],R[maxnode],U[maxnode],D[maxnode];
int cnt,Row[maxnode],Col[maxnode],C[maxn],H[maxn];
void Init(int n,int m){
for(int i=;i<=m;i++){
L[i]=i-;R[i]=i+;
U[i]=D[i]=i;C[i]=;
}
cnt=m;L[]=m;R[m]=;
for(int i=;i<=n;i++)H[i]=;
} void Link(int r,int c){
Row[++cnt]=r;C[Col[cnt]=c]+=; U[cnt]=c;D[cnt]=D[c];U[D[c]]=cnt;D[c]=cnt; if(!H[r])H[r]=L[cnt]=R[cnt]=cnt;
else R[cnt]=R[H[r]],L[cnt]=H[r],L[R[cnt]]=cnt,R[L[cnt]]=cnt;
} void Delete(int c){
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
--C[Col[j]],U[D[j]]=U[j],D[U[j]]=D[j];
} void Resume(int c){
L[R[c]]=c;R[L[c]]=c;
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++C[Col[j]],U[D[j]]=j,D[U[j]]=j;
} bool Solve(){
if(!R[])return true;
int p=R[];
for(int i=R[p];i;i=R[i])
if(C[p]>C[i])
p=i; Delete(p);
for(int i=D[p];i!=p;i=D[i]){
if(ans[belong[Row[i]]])continue;
for(int j=R[i];j!=i;j=R[j])
Delete(Col[j]); ans[belong[Row[i]]]=Row[i];
if(Solve())
return true;
ans[belong[Row[i]]]=;
for(int j=L[i];j!=i;j=L[j])
Resume(Col[j]);
}
Resume(p);
return false;
}
}dlx; int L[maxn],R[maxn];
bool G[maxn][maxn]; int main(){
int a,b,N,M,D,tot;
while(scanf("%d%d%d",&N,&M,&D)!=EOF){
memset(G,,sizeof(G));
while(M--){
scanf("%d%d",&a,&b);
G[a][b]=true;
G[b][a]=true;
} tot=;
for(int i=;i<=N;i++){
scanf("%d%d",&s[i],&t[i]);
tot+=(t[i]-s[i]+)*(t[i]-s[i]+)/;
G[i][i]=true;
} dlx.Init(tot,N*D);
memset(ans,,sizeof(ans));
for(int x=,p=;x<=N;x++)
for(int l=s[x];l<=t[x];l++)
for(int r=l;r<=t[x];r++){
++p;L[p]=l;R[p]=r;belong[p]=x;
for(int j=l;j<=r;j++)
for(int y=;y<=N;y++)
if(G[x][y])dlx.Link(p,N*(j-)+y);
}
if(dlx.Solve()){
for(int i=;i<=N;i++)
printf("%d %d\n",L[ans[i]],R[ans[i]]);
}
else
printf("No solution\n");
printf("\n");
}
return ;
}

搜索(DLX):HDU 3663 Power Stations的更多相关文章

  1. [DLX精确覆盖] hdu 3663 Power Stations

    题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...

  2. Power Stations HDU - 3663

    我为什么T了.... Power Stations Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  3. 【HDU 3663】 Power Stations

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3663 [算法] 先建图,然后用Dancing Links求解精确覆盖,即可 [代码] #inclu ...

  4. HDU 6034---Balala Power!(搜索+贪心)

    题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...

  5. hdu 3663 DLX

    思路:把每个点拆成(d+1)*n列,行数为可拆分区间数.对所有的有i号点拆分出来的行都要建一条该行到i列的边,那么就能确保有i号点拆出来的行只能选择一行. #include<set> #i ...

  6. 【HDOJ】Power Stations

    DLX.针对每个城市,每个城市可充电的区间构成一个plan.每个决策由N*D个时间及N个精确覆盖构成. /* 3663 */ #include <iostream> #include &l ...

  7. 搜索(DLX): POJ 3074 3076 Sudoku

    POJ 3074 : Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller ...

  8. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

  9. HDU 4318 Power transmission(最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=4318 题意: 给出运输路线,每条路线运输时都会损失一定百分比的量,给定起点.终点和初始运输量,问最后到达终点时最 ...

随机推荐

  1. 第二篇:python高级之装饰器

    python高级之装饰器   python高级之装饰器 本节内容 高阶函数 嵌套函数及闭包 装饰器 装饰器带参数 装饰器的嵌套 functools.wraps模块 递归函数被装饰 1.高阶函数 高阶函 ...

  2. enter 默认搜索

    onkeydown=" if(event.keyCode==13) Search(); "

  3. Win7设置承载网络 分类: 网络 2014-10-30 09:08 105人阅读 评论(0) 收藏

    Win7设置承载网络 (1)最重要的第一步,要知道自己的网卡是否支持承载网络,如果不支持就悲剧地一票否决了,支持的话才能开始以后各步骤的设置. netsh wlan show drivers (2)设 ...

  4. 【转】 UITableViewCell的标记、移动、删除、插入

    原文: http://blog.csdn.net/duxinfeng2010/article/details/7725897 这篇文章是建立在 代码实现 UITableView与UITableView ...

  5. 通常我们使用[NSDate date]方法得到的时间与当前时间不一致,如何解决?

    NSDate *date = [NSDate date];    NSTimeZone *zone = [NSTimeZone systemTimeZone];    NSInteger interv ...

  6. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

  7. centos 7 samba相关命令

    1.安装相关包 yum install samba samba-client samba-common 2.启动smb的命令 systemctl enable smb.service systemct ...

  8. vijos P1055奶牛浴场&& Winter Camp2002

    这道题是我在寒假的模拟赛里碰到的,现在想起来仍觉得余味无穷.题目大意大致如下:给你一个矩形并在其中划出一个最大的子矩形,当然,在这个矩形里有些地方是取不到的,也就是说我们划的这个子矩形不能包含这些点( ...

  9. 基于 libmemcahce 的memcache 操作

    <?php echo '<pre>'; //测试的键值的数量 $count = 30; $mem = create_memcache(); //var_dump($mem->i ...

  10. Python - 多元组(tuple)

    声明一个多元组 (4, 5, 6) 这是列表 [4, 5, 6] 与列表不一样在于多元组使用() 来组织元素而list使用方括号[] 而且多元组不能更改,用于当你的数组不想像list一样会被更改时就使 ...