题意:

给你n个任务,k个机器,n个任务的起始时间,持续时间,完成任务的获利

每个机器可以完成任何一项任务,但是同一时刻只能完成一项任务,一旦某台机器在完成某项任务时,直到任务结束,这台机器都不能去做其他任务

最后问你当获利最大时,应该安排那些机器工作,即输出方案

分析:

要求的是最大费用,因此将费用取负就可以用最小费用最大流算法了

建图很重要。如果图建的复杂的话,可能就会超时了的!

新建源汇S T‘

对任务按照起始时间s按升序排序

拆点:

u 向 u'连一条边 容量为 1 费用为 -c,

u' 向 T连一条边 容量为 inf 费用为 0;

如果任务u完成后接下来最先开始的是任务v

则从u' 向 v连一条边,容量inf 费用 0.

另外,任务从前往后具有传递性,所以必须是第i个任务向第i+1个任务建边,容量为inf

// File Name: 164-C.cpp
// Author: Zlbing
// Created Time: 2013年08月13日 星期二 14时57分55秒 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=2e3+;
struct Edge{
int from,to,cap,flow,cost;
};
struct MCMF{
int n,m,s,t;
vector<Edge>edges;
vector<int> G[MAXN];
int inq[MAXN];
int d[MAXN];
int p[MAXN];
int a[MAXN];
void init(int n){
this->n=n;
for(int i=;i<=n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost){
edges.push_back((Edge){from,to,cap,,cost});
edges.push_back((Edge){to,from,,,-cost});
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BellmanFord(int s,int t,int& flow,int& cost){
for(int i=;i<=n;i++)d[i]=INF;
CL(inq,);
d[s]=;inq[s]=;p[s]=;a[s]=INF; queue<int>Q;
Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
inq[u]=;
for(int i=;i<(int)G[u].size();i++){
Edge& e=edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to]){
Q.push(e.to);
inq[e.to]=;
}
}
}
}
if(d[t]==INF)return false;
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s){
edges[p[u]].flow+=a[t];
edges[p[u]^].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int Mincost(int s,int t){
int flow=,cost=;
while(BellmanFord(s,t,flow,cost));
return cost;
}
};
struct node{
int u, v,cost,id ;
bool operator <(const node &rsh)const
{
return u<rsh.u;
}
}pos[MAXN];
MCMF solver;
int ans[MAXN];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
int a,b,c;
solver.init(*n+);
REP(i,,n-)
{
scanf("%d%d%d",&a,&b,&c);
pos[i]=(node){
a,a+b-,c,i
};
}
sort(pos,pos+n);
int s=n*,t=n*+;
REP(i,,n-)
{
solver.AddEdge(i,i+n,,-pos[i].cost);
solver.AddEdge(i+n,t,INF,);
if(i<n-)solver.AddEdge(i,i+,INF,);
for(int j=i+;j<n;j++)
{
if(pos[i].v<pos[j].u)
{
solver.AddEdge(i+n,j,INF,);
break;
}
}
}
solver.AddEdge(s,,m,);
solver.AddEdge(n-,t,m,);
solver.Mincost(s,t);
//printf("cost=%d\n",-tmp);
CL(ans,);
for(int i=;i<(int)solver.edges.size();i++)
{
Edge e=solver.edges[i];
if(e.cap)
{
int u=e.from;
if(u!=s&&u!=t&&u<n&&e.flow==e.cap)
{
ans[pos[u].id]=;
}
}
}
for(int i=;i<n;i++)
{
if(i)printf(" ");
printf("%d",ans[i]);
}
printf("\n");
}
return ;
}

CF-164C. Machine Programming(最小费用最大流)的更多相关文章

  1. 【CF708D】Incorrect Flow 最小费用可行流

    [CF708D]Incorrect Flow 题意:给你一个点数为n,边数为m的流网络,每条边有一个容量c和流量f,这个网络可能是不合法的.你可以花费1的代价使c或f减少或增加1,可以修改无限次.你不 ...

  2. hdu 2686&&hdu 3376(拆点+构图+最小费用最大流)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  4. POJ - 2195 最小费用最大流

    题意:每个人到每个房子一一对应,费用为曼哈顿距离,求最小的费用 题解:单源点汇点最小费用最大流,每个人和房子对于建边 #include<map> #include<set> # ...

  5. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  6. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  7. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  8. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  9. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

随机推荐

  1. Java基础知识强化之集合框架笔记35:List练习之产生10个1~20之间的随机数(要求:随机数不能重复)

    1. 需求:获取10个1-20之间的随机数,要求不能重复 用数组实现,但是数组的长度是固定的,长度不好确定.所以我们使用集合实现. 分析: • 创建产生随机数的对象 • 创建一个存储随机数的集合. • ...

  2. windows10UWP:如何判断一个文件或者文件夹是否存在?

    使用 StorageFolder.TryGetItemAsync 方法,尝试按名称获取文件或文件夹,不需将错误捕捉逻辑添加到代码(就像使用 StorageFolder.GetItemAsync 一样) ...

  3. oracle 字符串切割成结果集方法

    oracle字符串切割几种方式 方法一: SELECT COLUMN_VALUE FROM TABLE(SYS.ODCIVARCHAR2LIST('1','2','3','4','5')); 方法二: ...

  4. centos mysql 编译安装

    centos mysql 编译安装 1.安装 创建MySQL用户 sudo useradd mysql 下载MySQL的源码包,我们这里使用的时5.5.18 安装依赖 sudo yum -y inst ...

  5. Extjs ——radiogroup子元素宽度调整

    配置项 类型 说明 allowBlank Boolean 设置是否必须选择至少一项,true表示可以不选,false表示不能为空至少选一项,默认为true blankText String 当allo ...

  6. SQL常用的语句和函数

    order by 的数值型灵活使用 select * from table_a where order by decode(函数,'asc',1,'desc',-1)*jsny; 控制试图的访问时间: ...

  7. rdlc报表

    也是第一次接触报表这个东西.现在在我理解,报表无非就是两个内容,格式和数据. 格式没有多少了解,就记录了,以后再续.数据的绑定和结果的显示是怎么实现的呢? 今天的主角就是rdlc这个文件和Report ...

  8. PL/SQL Developer远程连接Oracle数据库

    首先打开电脑,到pl/sql安装的指定目录[D:\app\DZL\product\11.2.0\dbhome_1\NETWORK\ADMIN]找到[tnsnames.ora]     打开[tnsna ...

  9. 解决ld: warning: directory not found for option警告

    去掉警告的办法如下: 1选择工程, 编译的 (targets) 2选择 Build Settings 菜单 3查找 Library Search Paths 和 Framework Search Pa ...

  10. C# var

    VAR 是3.5新出的一个定义变量的类型其实也就是弱化类型的定义VAR可代替任何类型编译器会根据上下文来判断你到底是想用什么类型的 至于什么情况下用到VAR 我想就是你无法确定自己将用的是什么类型就可 ...