package org.apache.spark.ui

private[spark] object ToolTips {
  val SCHEDULER_DELAY =
    """Scheduler delay includes time to ship the task from the scheduler to
       the executor, and time to send the task result from the executor to the scheduler. If
       scheduler delay is large, consider decreasing the size of tasks or decreasing the size
       of task results."""

val TASK_DESERIALIZATION_TIME =
    """Time spent deserializing the task closure on the executor, including the time to read the
       broadcasted task."""

val KSHUFFLE_READ_BLOCED_TIME =
    "Time that the task spent blocked waiting for shuffle data to be read from remote machines."

val INPUT = "Bytes and records read from Hadoop or from Spark storage."

val OUTPUT = "Bytes and records written to Hadoop."

val STORAGE_MEMORY =
    "Memory used / total available memory for storage of data " +
      "like RDD partitions cached in memory. "

val SHUFFLE_WRITE =
    "Bytes and records written to disk in order to be read by a shuffle in a future stage."

val SHUFFLE_READ =
    """Total shuffle bytes and records read (includes both data read locally and data read from
       remote executors). """

val SHUFFLE_READ_REMOTE_SIZE =
    """Total shuffle bytes read from remote executors. This is a subset of the shuffle
       read bytes; the remaining shuffle data is read locally. """

val GETTING_RESULT_TIME =
    """Time that the driver spends fetching task results from workers. If this is large, consider
       decreasing the amount of data returned from each task."""

val RESULT_SERIALIZATION_TIME =
    """Time spent serializing the task result on the executor before sending it back to the
       driver."""

val GC_TIME =
    """Time that the executor spent paused for Java garbage collection while the task was
       running."""

val JOB_TIMELINE =
    """Shows when jobs started and ended and when executors joined or left. Drag to scroll.
       Click Enable Zooming and use mouse wheel to zoom in/out."""

val STAGE_TIMELINE =
    """Shows when stages started and ended and when executors joined or left. Drag to scroll.
       Click Enable Zooming and use mouse wheel to zoom in/out."""

val JOB_DAG =
    """Shows a graph of stages executed for this job, each of which can contain
       multiple RDD operations (e.g. map() and filter()), and of RDDs inside each operation
       (shown as dots)."""

val STAGE_DAG =
    """Shows a graph of RDD operations in this stage, and RDDs inside each one. A stage can run
       multiple operations (e.g. two map() functions) if they can be pipelined. Some operations
       also create multiple RDDs internally. Cached RDDs are shown in green.
    """
}

Spark运行各个时间段的解释的更多相关文章

  1. Spark运行模式与Standalone模式部署

    上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模 ...

  2. Spark入门实战系列--4.Spark运行架构

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Appli ...

  3. Spark运行原理解析

    前言: Spark Application的运行架构由两部分组成:driver program(SparkContext)和executor.Spark Application一般都是在集群中运行,比 ...

  4. 让spark运行在mesos上 -- 分布式计算系统spark学习(五)

    mesos集群部署参见上篇. 运行在mesos上面和 spark standalone模式的区别是: 1)stand alone 需要自己启动spark master 需要自己启动spark slav ...

  5. 【转载】Spark运行架构

    1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个 ...

  6. Spark核心技术原理透视一(Spark运行原理)

    在大数据领域,只有深挖数据科学领域,走在学术前沿,才能在底层算法和模型方面走在前面,从而占据领先地位. Spark的这种学术基因,使得它从一开始就在大数据领域建立了一定优势.无论是性能,还是方案的统一 ...

  7. Spark运行架构

    http://blog.csdn.net/pipisorry/article/details/52366288 1. Spark运行架构 1.1 术语定义 lApplication:Spark App ...

  8. 执行Spark运行在yarn上的命令报错 spark-shell --master yarn-client

    1.执行Spark运行在yarn上的命令报错 spark-shell --master yarn-client,错误如下所示: // :: ERROR SparkContext: Error init ...

  9. Spark学习之路 (七)Spark 运行流程

    一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterMan ...

随机推荐

  1. 利用Java API通过路径过滤上传多文件至HDFS

    在本地文件上传至HDFS过程中,很多情况下一个目录包含很多个文件,而我们需要对这些文件进行筛选,选出符合我们要求的文件,上传至HDFS.这时就需要我们用到文件模式. 在项目开始前,我们先掌握文件模式 ...

  2. Java基础知识强化之集合框架笔记28:ArrayList集合练习之去除ArrayList集合中的重复字符串元素(升级)

    1. 需求:ArrayList去除集合中字符串的重复值(字符串的内容相同)     要求:不能创建新的集合,就在以前的集合上做. 2. 代码示例之 去除集合中重复元素,不创建新的集合: package ...

  3. C#压缩文件为zip格式

    Vercher   C#压缩文件为zip格式 需要ICSharpCode.SharpZipLib.dll,网上下载的到. 代码是从网上找来的: 1 public class ZipClass 2 { ...

  4. MongoDB_1

    突然想去看下MongoDB的东西,于是有了这篇文章.其实很早以前就看过一些关于NoSql的文章,还记得当时里面有介绍MongoDB的,多瞅了2眼,并且在Window下安装了MongoDB的驱动,小玩了 ...

  5. 常用CDN公共库

    Jquery <script src="http://lib.sinaapp.com/js/jquery/1.7.2/jquery.min.js"></scrip ...

  6. qrcode-php生成二维码

    调用PHP QR Code非常简单,如下代码即可生成一张内容为"http://www.baidu.com"的二维码. include 'phpqrcode.php'; QRcode ...

  7. 阿里druid 介绍及配置

    1. 简介,什么是Druid Druid是阿里巴巴开源平台上的一个项目,整个项目由数据库连接池.插件框架和SQL解析器组成.该项目主要是为了扩展JDBC的一些限制,可以让程序员实现一些特殊的需求,比如 ...

  8. 通用数据挖掘[ZZ]

    一.什么是数据挖掘?许多人认为数据挖掘更像是一门哲学,或数学的组成部分,而不是业务需求的实际解决方案.您可以从采用的各种定义中看出这一点,例如:“数据挖掘是对非常大型的数据进行的研究和分析,采用自动或 ...

  9. javascript——函数内部属性

    <script type="text/javascript"> //在函数内部有两个特殊的属性:arguments 和 this.arguments是一个类数组对象,包 ...

  10. CentOS 6.5 IP 设置

    DEVICE=eth0TYPE=EthernetUUID=7d6d54e0-054d-472b-8cc1-080f16ef36c1ONBOOT=yesNM_CONTROLLED=yesBOOTPROT ...