[Algorithms] Build a Binary Tree in JavaScript and Several Traversal Algorithms
A binary tree is a tree where each node may only have up to two children. These children are stored on the left
and right
properties of each node.
When traversing a binary tree, we have three common traversal algorithms: in order, pre-order, and post-order. In this lesson, we write each of these algorithms and explore their differences.
// Binary Trees and Tree Traversal // Binary trees are trees whose nodes can only have up to two children function createBinaryNode(key) {
return {
key,
left: null,
right: null,
addLeft(leftKey) {
const newLeft = createBinaryNode(leftKey)
this.left = newLeft
return newLeft
},
addRight(rightKey) {
const newRight = createBinaryNode(rightKey)
this.right = newRight
return newRight
}
}
} const TRAVERSALS = {
/**
* Javascript Call stack is Last in, First Out,
* So it keep calling
* TRAVERSALS.IN_ORDER(node.left, visitFn)
* Until it reach the bottom left node 'h' (b- d- h)
* h - visitFn get called
* h - TRAVERSALS.IN_ORDER(node.right, visitFn) get called
*
* d - visitFn get called
* d - left
* d - right
*
* b - visitFn
* b - left
* b - right
*/
IN_ORDER: (node, visitFn) => {
if (node !== null) {
console.log('left', node.left && node.left.key)
TRAVERSALS.IN_ORDER(node.left, visitFn)
console.log('call', node.key)
visitFn(node)
console.log('right', node.right && node.right.key)
TRAVERSALS.IN_ORDER(node.right, visitFn)
}
},
PRE_ORDER: (node, visitFn) => {
if (node !== null) {
visitFn(node)
TRAVERSALS.PRE_ORDER(node.left, visitFn)
TRAVERSALS.PRE_ORDER(node.right, visitFn)
}
},
POST_ORDER: (node, visitFn) => {
if (node !== null) {
TRAVERSALS.POST_ORDER(node.left, visitFn)
TRAVERSALS.POST_ORDER(node.right, visitFn)
visitFn(node)
}
}
} function createBinaryTree(rootKey) {
const root = createBinaryNode(rootKey) return {
root,
print(traversalType = 'IN_ORDER') {
let result = '' const visit = node => {
result += result.length === 0 ? node.key : ` => ${node.key}`
} TRAVERSALS[traversalType](this.root, visit) return result
}
}
} const tree = createBinaryTree('a')
const b = tree.root.addLeft('b')
const c = tree.root.addRight('c')
const d = b.addLeft('d')
const e = b.addRight('e')
const f = c.addLeft('f')
const g = c.addRight('g')
const h = d.addLeft('h')
const i = d.addRight('i') console.log('IN_ORDER: ', tree.print())// IN_ORDER: h => d => i => b => e => a => f => c => g
//console.log('PRE_ORDER: ', tree.print('PRE_ORDER')) // PRE_ORDER: a => b => d => h => i => e => c => f => g
//console.log('POST_ORDER: ', tree.print('POST_ORDER')) // POST_ORDER: h => i => d => e => b => f => g => c => a
exports.createBinaryNode = createBinaryNode
exports.createBinaryTree = createBinaryTree
Time complexity: O(n),
Space Complexity O(h) for average cases; h = logN -- this is because we need to stack all the function calls. worse cases: O(n)
[Algorithms] Build a Binary Tree in JavaScript and Several Traversal Algorithms的更多相关文章
- Construct Binary Tree from Inorder and Postorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...
- Construct Binary Tree from Preorder and Inorder Traversal
Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...
- (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- (二叉树 递归) leetcode 106. Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树
Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal
Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...
- 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...
- LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal
LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...
- 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal
LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...
随机推荐
- web前端零基础入门学习!前端真不难!
现在互联网发展迅速,前端也成了很重要的岗位之一,许多人都往前端靠拢,可又无能为力,不知所措,首先我们说为什么在编程里,大家都倾向于往前端靠呢?原因很简单,那就是,在程序员的世界里,前端开发是最最简单的 ...
- java.util.regex包下的Pattern和Matcher详解(正则匹配)
java正则表达式通过java.util.regex包下的Pattern类与Matcher类实现(建议在阅读本文时,打开java API文档,当介绍到哪个方法时,查看java API中的方法说明,效果 ...
- C# For Bot Framework
Bot Framework是一个聊天机器人的框架,背后是微软的SDK,它可以使用C#和Nodejs开发,今天我尝试用创建一个比较简单Bot 参考地址:https://docs.microsoft.co ...
- Codeforces Round #119 (Div. 2) Cut Ribbon(DP)
Cut Ribbon time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Memory Allocation with COBOL
Generally, the use of a table/array (Static Memory) is most common in COBOL modules in an applicatio ...
- Python - 字符和字符值之间的转换
字符和字符值之间的转换 Python中, 字符和字符值, 直接的转换, 包含ASCII码和字母之间的转换,Unicode码和数字之间的转换; 也可以使用map, 进行批量转换, 输出为集合, 使用jo ...
- Standard Java集合类问题待整理
1. HashSet.LinkedHashSet和TreeSet HashSet采用散列函数对元素进行排序,是专门为快速查询而设计的.存入HashSet的对象必须定义hashCode方法. TreeS ...
- [Codeforces 1053C] Putting Boxes Together
Link: Codeforces 1053C 传送门 Solution: 先推出一个结论: 最后必有一个点不动且其为权值上最中间的一个点 证明用反证证出如果不在中间的点必有一段能用代价少的替代多的 这 ...
- 【找规律】【二进制拆分】hdu6129 Just do it
给你数列a,问你对它作m次求前缀异或和之后的新数列是什么. 考虑a1对最终生成的数列的每一位的贡献,仅仅考虑奇偶性, 当m为2的幂次的时候,恰好是这样的 2^0 1 1 1 1 1 ... 2^1 1 ...
- 【预处理】Codeforces Round #407 (Div. 2) C. Functions again
考虑枚举每个子串开头的位置,然后答案转化成询问这个位置之后 哪个位置的前缀和 - 这位置的前缀和 最大(当然是已经把绝对值和正负的情况处理好了,可以发现按奇偶,这个序列只有两种情况),只需要预处理这两 ...