HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 53 Accepted Submission(s): 15
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
If the original graph is strongly connected, just output -1.
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Case 2: 1
Case 3: 15
Tarjan 缩点。
/*
* Author:kuangbin
* 1004.cpp
*/ #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <string>
#include <math.h>
using namespace std;
/*
* Tarjan算法
* 复杂度O(N+M)
*/
const int MAXN = ;//点数
const int MAXM = ;//边数
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
//num数组不一定需要,结合实际情况 void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
}
void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if( !DFN[v] )
{
Tarjan(v);
if( Low[u] > Low[v] )Low[u] = Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
}
while( v != u);
}
}
void solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,,sizeof(num));
Index = scc = top = ;
for(int i = ;i <= N;i++)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
int in[MAXN],out[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
scanf("%d",&T);
int iCase = ;
int n,m;
int u,v;
while(T--)
{
iCase++;
init();
scanf("%d%d",&n,&m);
for(int i = ;i < m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
solve(n);
if(scc == )
{
printf("Case %d: -1\n",iCase);
continue;
}
for(int i = ;i <= scc;i++)
{
in[i] = ;
out[i] = ;
}
for(int u = ;u <= n;u++)
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(Belong[u]==Belong[v])continue;
out[Belong[u]]++;
in[Belong[v]]++;
}
long long sss = (long long)n*(n-) - m;
long long ans = ;
for(int i = ;i <= scc;i++)
{
if(in[i]== || out[i] == )
ans = max(ans,sss - (long long)num[i]*(n-num[i]));
}
printf("Case %d: %d\n",iCase,ans);
}
return ;
}
HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)的更多相关文章
- HDU 4699 Editor (2013多校10,1004题)
Editor Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Su ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- hdu 4635 Strongly connected
http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
随机推荐
- 尽量用const,enum,inline代替define
在读<Effective C++>之前,我确实不知道const,enum,inline会和define扯上什么关系,看完感觉收获很大,记录之. define: 宏定义. 在编译预处理时,对 ...
- FineReport——JS二次开发(局部刷新)
在FR中,可以通过在form表单设置多个报表模板,然后通过对某一模板刷新实现局部刷新的功能,在cpt模板中,由于只存在一个模板,所以无法实现局部刷新. 其实,最好的局部刷新办法是自定义一个页面,然后添 ...
- 字符串aaaa......bbbb....ccc...dddddd用正则替换为abcd
public static void main(String[] args) { String s = "aaaa......bbbb....ccc...dddddd"; Stri ...
- 视频H5のVideo标签在微信里的坑和技巧
随着 4G 的普遍以及 WiFi 的广泛使用,手机上的网速已经足够稳定和高速,以视频为主的 HTML5 也越来越普遍了,相比帧动画,视频的表现更加丰富,前段时间开发了一个以视频为主的移动端 HTML5 ...
- 【解决】win7 64 pip安装scrapy出错
问题一:microsoft visual c++ 9.0 is required 参考:http://www.cnblogs.com/ldm1989/p/4210743.html 问题二:ERROR: ...
- onethink 路由规则无效问题解决
修改文件 Application/Common/Conf/config.php 打开注释 //'MODULE_ALLOW_LIST' => array('Home','Admin'), // 1 ...
- 《深入理解Android2》读书笔记(一)
2017-5-12 从今天开始估计有一段空闲时间,开始阅读<深入理解Android2>,并写读书笔记. 第一章搭建环境直接略过. 第二章是Binder,暂时略过 7大类服务包括:1.And ...
- Python 一条语句如何在多行显示的问题
在做python学习的时候,我照着pdf,敲代码,遇到一大难题: return render_to_response('index.html',{'title':'my page','user':us ...
- Java网络编程一
1.InetAddress的应用 import java.util.List; import java.math.BigDecimal; import java.net.InetAddress; im ...
- Sqli-labs less 1
Less-1 我们可以在http://127.0.0.1/sqllib/Less-5/?id=1后面直接添加一个 ' ,来看一下效果: 从上述错误当中,我们可以看到提交到sql中的1'在经过sql语句 ...