POJ_2533 Longest Ordered Subsequence【DP】【最长递增子序列】

Longest Ordered Subsequence

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 58448 Accepted: 26207

Description

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7

1 7 3 5 9 4 8

Sample Output

4

题意

给出一个数组,求数组中的最长递增子序列的长度

思路一

我们可以用两个数组,第一个数组为原数组,第二个数组为原数组经过排序加去重(如果是非下降子序列就不需要去重),然后求两个数组的最长公共子序列就可以了。

AC代码一

#include <iostream>          //转化为求LCS
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std; typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e3 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn]; int main()
{
int n;
cin >> n;
int i, j;
for (i = 0; i < n; i++)
{
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b, b + n);
int dre = unique(b, b + n) - b; //需要去重 因为是最长上升的 如果是非下降,那么不需要去重
memset(dp, 0, sizeof(dp));
for (i = 0; i < dre; i++)
{
if (a[0] == b[i])
dp[0][i] = 1;
else if (i)
dp[0][i] = dp[0][i - 1];
}
for (i = 0; i < n; i++)
{
if (b[0] == a[i])
dp[i][0] = 1;
else if (i)
dp[i][0] = dp[i - 1][0];
}
for (i = 1; i < n; i++)
{
for (j = 1; j < dre; j++)
{
if (a[i] == b[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
cout << dp[n - 1][dre - 1] << endl;
}

思路二

如果一个数小于它前面的一个数,那么到这个数为止的最长上升子序列就是前面那个数的最长上升子序列 + 1 然后每个数往前扫一遍就可以了

AC代码二

#include <iostream>    //DP
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std; typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e3 + 5;
const int MOD = 1e9 + 7;
int arr[maxn], dp[maxn]; int main()
{
int n;
cin >> n;
int i, j;
for (i = 0; i < n; i++)
scanf("%d", &arr[i]);
memset(dp, 0, sizeof(dp));
int ans = 1;
for (i = 0; i < n; i++)
{
dp[i] = 1;
for (j = i - 1; j >= 0; j--)
{
if (arr[i] > arr[j])
dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > ans)
ans = dp[i];
}
cout << ans << endl;
}

POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】的更多相关文章

  1. POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  2. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  3. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  4. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

  5. POJ2533 Longest Ordered Subsequence 【最长递增子序列】

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 32192   Acc ...

  6. POJ - 2533 Longest Ordered Subsequence(最长上升子序列)

    d.最长上升子序列 s.注意是严格递增 c.O(nlogn) #include<iostream> #include<stdio.h> using namespace std; ...

  7. [POJ2533]Longest Ordered Subsequence<dp>

    题目链接:http://poj.org/problem?id=2533 描述: A numeric sequence of ai is ordered if a1 < a2 < ... & ...

  8. POJ_2533 Longest Ordered Subsequence 【LIS】

    一.题目 Longest Ordered Subsequence 二.分析 动态规划里的经典问题.重在DP思维. 如果用最原始的DP思想做,状态转移方程为$DP[i] = max(DP[j] + 1) ...

  9. poj 2533 Longest Ordered Subsequence(dp)

    题目:http://poj.org/problem?id=2533 题意:最长上升子序列.... 以前做过,课本上的思想 #include<iostream> #include<cs ...

随机推荐

  1. C语言 函数指针一(函数指针的定义)

    //函数指针 #include<stdio.h> #include<stdlib.h> #include<string.h> //函数指针类型跟数组类型非常相似 / ...

  2. Asp.net控制Tomcat启动关闭的实现方法

    一.场景 近日有个项目客户要求能自己配置相关权限.由于历史原因这个项目采用的是公司以前的权限系统.这个权限系统很强大,不过有个弊端,就是每增加一个权限菜单都要重启才能生效,不然就要等1天它缓存过期后才 ...

  3. java关键字及含义

    http://blog.csdn.net/hfmbook/article/details/7634385

  4. Python_selenium中类函数模块的简单介绍

    Python_selenium中类函数模块的简单介绍 一.demo1.py的代码如下所示 #coding:utf-8 class ClassA(object): string = "这是一个 ...

  5. 面试题思考:Cookie 和 Session的区别

    面试回答: 1.cookie数据存放在客户的浏览器上,session数据放在服务器上. 2.cookie不是很安全,别人可以分析存放在本地的cookie并进行cookie欺骗,考虑到安全应当使用ses ...

  6. 表达式求值(java)

    今天去面试,考了这个,短时间没想出来... 太笨了! 后来想用栈和递归做 但是看了网上才知道,可以将中缀表达式转为后缀表达式,就极其方便了. import java.util.Scanner; imp ...

  7. Let's encrypt申请泛域名证书

    1.下载工具 wget https://dl.eff.org/certbot-auto chmod a+x ./certbot-auto 2.初始化 ./certbot-auto 3.获取证书(1) ...

  8. yum -y install epel-release

    EPEL - Fedora Project Wiki https://fedoraproject.org/wiki/EPEL

  9. 国内java,oa,weixin opensource framework www.jeecg.org

    Soap/rest 为API生,为框架死,为Debug奋斗一辈子!吃符号的亏,上大小写的当,最后死在需求上!

  10. Akka Essentials - 1

    参考Akka Essentials   1 Introduction to Akka Actor Model Actor模式的由来 In 1973, Carl Hewitt, Peter Bishop ...