TensorFlow计算模型—计算图
TensorFlow是一个通过计算图的形式来表述计算的编程系统。其中的Tnesor,代表它的数据结构,而Flow代表它的计算模型。TensorFlow中的每一个计算都是计算图上的一个节点,而节点之间的线描述了计算之间的依赖关系。
在TensorFlow程序中,系统会自动维护一个默认的计算图,通过tf.get_default_gragh函数可以获取当前默认的计算图。
除了默认的计算图,TensorFlow也支持通过tf.Graph函数来生成新的计算图。不同的计算图上的张量和运算不会共享。如下示例:
#coding:utf-8
import tensorflow as tf g1 = tf.Graph()
with g1.as_default():
#在计算图g1中定义一个变量v,并且设置初始值为0
v = tf.get_variable(name="v",initializer=tf.zeros_initializer( )(shape=[1])) g2 = tf.Graph()
with g2.as_default():
# 在计算图g2中定义一个变量v,并且设置初始值为0
v = tf.get_variable(name="v", initializer=tf.ones_initializer( )(shape=[1])) with tf.Session(graph=g1) as sess:
# 运行初始化的两种方法
init = tf.global_variables_initializer()
sess.run(init) #这个方法已经过时
#tf.initialize_all_variables().run() #这句话是什么意思?
with tf.variable_scope("",reuse=True):
#通过名字获取变量
print(sess.run(tf.get_variable("v"))) with tf.Session(graph=g2) as sess:
# 运行初始化的两种方法
init = tf.global_variables_initializer()
sess.run(init)
#tf.initialize_all_variables().run() #这句话是什么意思?
with tf.variable_scope("",reuse=True):
#通过名字获取变量
print(sess.run(tf.get_variable("v")))
上面的代码产生了两个计算图,每个计算图中定义了一个名字为“v”的变量。在计算图g1中,将v初始化为0;在计算图g2中,将v初始化为1.由此可见,当运行不同的计算图时,变量v的值也不一样。
Tensorflow中的计算图不仅仅可以用来隔离张量和运算,还可以提供管理张量和运算的机制。
计算图可以通过tf.Graph.device()函数来指定运行的设备。这是因为tensorflow使用了GPU机制。一下代码演示指派GPU的操作。
import tensorflow as tf
a = tf.constant([1,2])
b = tf.constant([3,4])
g = tf.Graph()
with g.device('/gpu:0'):
c = tf.add(a, b, "add")
with tf.Session() as sess:
print(sess.run(c))
在一个计算图中,可以通过集合(collection)来管理不同类别的资源。比如通过tf.add_to_collection()函数将资源加入一个或多个集合中。然后通过tf.get_collection获取集合中的所有资源。这里的资源可以是张量、变量或者运行Tensorflow程序所需要的队列资源等等。
TensorFlow中维护的集合列表
| 集合名称 | 集合内容 | 使用场景 |
|---|---|---|
tf.GraphKeys.VARIABLES |
所有变量 | 持久化TensorFlow模型 |
tf.GraphKeys.TRAINABLE_VARIABLES |
可学习的变量(一般指神经网络中的参数) | 模型训练、生成模型可视化内容 |
tf.GraphKeys.SUMMARIES |
日志生成相关的张量 | TensorFlow计算可视化 |
tf.GraphKeys.QUEUE_RUNNERS |
处理输入的QueueRunner | 输入处理 |
tf.GraphKeys.MOVING_AVERAGE_VARIABLES |
所有计算了滑动平均值的变量 | 计算变量的滑动平均值 |
TensorFlow计算模型—计算图的更多相关文章
- Tensorflow计算模型 —— 计算图
转载自:http://blog.csdn.net/john_xyz/article/details/69053626 Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图 ...
- TensorFlow 计算模型 -- 计算图
TensorFlow是一个通过计算图的形式表述计算机的编程系统 TensorFlow程序一般分为两个阶段,第一个阶段需要定义计算图中所有的计算(变量) 第二个阶段为执行计算 如以下代码 import ...
- Tensorboard教程:Tensorflow命名空间与计算图可视化
Tensorflow命名空间与计算图可视化 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 强烈推荐Tensorflow实战Google深度学习框架 实验平台: Tensorflow ...
- TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...
- Python之TensorFlow的模型训练保存与加载-3
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1 ...
- Tensorflow 保存模型 & 在java中调用
本节涉及: 保存TensorFlow 的模型供其他语言使用 java中调用模型并进行预测计算 一.保存TensorFlow 的模型供其他语言使用 如果用户选择“y” ,则执行下面的步骤: 判断程序执行 ...
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...
- 性能测试学习之二 ——性能测试模型(PV计算模型)
PV计算模型 现有的PV计算公式是: 每台服务器每秒平均PV量 =( (总PV*80%)/(24*60*60*40%))/服务器数量 =2*(总PV)/* (24*60*60) /服务器数量 通过定积 ...
随机推荐
- BZOJ4873 Shoi2017寿司餐厅(最小割)
选择了某个区间就必须选择其所有子区间,容易想到这是一个最大权闭合子图的模型.考虑将区间按长度分层,相邻层按包含关系连边,区间[i,j]的权值即di,j,其中最后一层表示长度为1的区间的同时也表示寿司本 ...
- Git无法删除文件问题:fatal: pathspec 'readme.txt' did not match any files
在使用Git时,不小心创建了一个不需要的文件,想要删除一个文件时,出现了错误: fatal: pathspec 'readme.txt' did not match any files 原因是新建的这 ...
- 122. Best Time to Buy and Sell Stock II (Array)
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- BZOJ1934:[SHOI2007]善意的投票 & BZOJ2768:[JLOI2010]冠军调查——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1934 https://www.lydsy.com/JudgeOnline/problem.php? ...
- AOJ.667 抢占白房子
抢占白房子 点我挑战题目 考察点 字符串 Time Mem Len Lang 14ms 444 KB 0.75 K GCC 题意分析 数据仅有一组,根据题目,左上角的一个格子为白色,与白色相邻的(无论 ...
- [学习笔记]FFT——快速傅里叶变换
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...
- 总结:Bias(偏差),Error(误差),Variance(方差)及CV(交叉验证)
犀利的开头 在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模 ...
- SDWebImage的使用说明
1. 在需要的地方导入头文件 #import "UIImageView+WebCache.h" webCache:网络缓存,几乎目前所有的浏览器都有一个内置的缓存,它们通常利用客户 ...
- AIM Tech Round (Div. 2) B
B. Making a String time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- expect使用小结
因为工作关系,需要经常从线上机器上拉取数据,于是想着能否写个脚本,自动完成这个任务呢? 我一般使用scp在机器间传输文件,然而每次scp都需要输入密码,自动化脚本怎么解决这个问题呢?于是expect这 ...