本篇主要是为了记录UCB策略与Gradient策略在解决Multi-Armed Bandit问题时的实现方法,涉及理论部分较少,所以请先阅读Reinforcement Learning: An Introduction (Drfit) 的2.7,2.8的内容。为了更深入一点了解UCB策略,可以随后阅读下面这篇文章:

【RL系列】Multi-Armed Bandit笔记补充(二)—— UCB策略

UCB策略需要进行初始化工作,也就是说通常都会在进入训练之前先将每个动作都测试一变,保证每个动作被选择的次数都不为0且都会有一个初始的收益均值和置信上限,一般不会进行冷启动(冷启动的话,需要在开始时有一定的随机动作,会降低动作选择的效率)。我们可以设初始化函数UCBinitial,将其表现为Matlab:

function [Q UCBq] = UCBInitial(Q, Reward, UCBq)
% CurrentR: Current Reward
% CurrentA: Current Action
% RandK: K-Armed Bandit
% Q: Step-size Average Reward
% UCBq: Q + Upper Confidence Bound RandK = length(Reward);
for n = 1:RandK
CurrentA = n;
CurrentR = normrnd(Reward(CurrentA), 1); Q(CurrentA) = (CurrentR - Q(CurrentA))*0.1 + Q(CurrentA);
UCBq(CurrentA) = Q(CurrentA) + c*(2*log(n))^0.5;
end

  

在训练中,UCB动作选择策略和置信上限值的更新策略可以写为:

% UCBq: Q + Upper Confidence Bound
% TotalCalls(Action): The Cumulative call times of Action
% c: Standard Deviation of reward in theorical analysis [MAX CurrentA] = max(UCBq);
MAXq(CurrentA) = Q(CurrentA) + c*(2*log(n)/TotalCalls(CurrentA))^0.5;

  

注意公式里的c应为理论上收益的标准差,但因为收益分布是一个黑箱,所以这个参数只能从实际实验中测试推断出来。这里我们假设收益标准差为1,所以为了实验效果,设c=1

接下来,我们就看一看UCB策略的测试效果吧。这里我们将其与epsilon-greedy策略进行对比(epsilon = 0.1),首先是Average Reward的测试结果:

UCB算法在前1000次的学习中可以得到比epsilon-greedy更高的均值收益评价。那么这是否就代表了UCB策略可以更高概率的选取最优动作?下面我们看Optimal Action Rate的测试结果:

可以发现学习次数较少时,UCB策略可以比epsilon-greedy策略更快的获得较高概率的最优解,但最优动作选择率始终维持在60%左右,是低于epsilon-greedy策略在1000次学习时接近90%的数值的。这也直接的反映出UCB并不适合求解最优。那为什么最优动作选择率不高,但平均收益却较高呢?UCB大概率选择的优先动作通常是排名靠前的动作,也就是说动作选择并不一定是最优,但大概率是最佳的3个或2个动作中的一个,所以UCB也可用作二元分类策略,将表现较好的(大概率选择的动作)分为一类,表现较差的动作分为一类。

我们来看看UCB在分类中的表现,用80%分类准确度来进行评价。如果经过UCB策略学习后得到的估计收益均值中的前5位中有超过或等于4位与实际的收益均值相符的频率,以此近似为分类的准确度。也就是说,如果有10个bandit,我们将其分为两类,收益高的一类(前5个bandit)与收益低的一类(后5个bandit),80%分类准确度可以以此计算:估计的前5个bandit与实际的有超过4个相符的概率。用数学表述出来就是,如果有一个Reward集合R:

将其分为两类,按数值大小排序,前五名为一类,归为集合G,G是R的子集。通过学习估计出的G,称为AG 。那么80%分类准确度可以表示为:

那么我们直接看结论吧:

UCB的80%分类准确度始终在90%上下,而epsilon-greedy却只有50%左右。显然,UCB在这方面做的要好于epsilon-greedy。

【RL系列】Multi-Armed Bandit笔记——UCB策略与Gradient策略的更多相关文章

  1. 【RL系列】Multi-Armed Bandit笔记补充(一)

    在此之前,请先阅读上一篇文章:[RL系列]Multi-Armed Bandit笔记 本篇的主题就如标题所示,只是上一篇文章的补充,主要关注两道来自于Reinforcement Learning: An ...

  2. 【RL系列】Multi-Armed Bandit笔记补充(二)

    本篇的主题是对Upper Conference Bound(UCB)策略进行一个理论上的解释补充,主要探讨UCB方法的由来与相关公式的推导. UCB是一种动作选择策略,主要用来解决epsilon-gr ...

  3. 【RL系列】Multi-Armed Bandit问题笔记

    这是我学习Reinforcement Learning的一篇记录总结,参考了这本介绍RL比较经典的Reinforcement Learning: An Introduction (Drfit) .这本 ...

  4. 【RL系列】MDP与DP问题

    推荐阅读顺序: Reinforcement Learning: An Introduction (Drfit)  有限马尔可夫决策过程 动态编程笔记 Dynamic programming in Py ...

  5. 【RL系列】从蒙特卡罗方法步入真正的强化学习

    蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益. ...

  6. 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价

    请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...

  7. (zhuan) 一些RL的文献(及笔记)

    一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinfor ...

  8. 【RL系列】马尔可夫决策过程中状态价值函数的一般形式

    请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫 ...

  9. Hibernate学习笔记二:Hibernate缓存策略详解

    一:为什么使用Hibernate缓存: Hibernate是一个持久层框架,经常访问物理数据库. 为了降低应用程序访问物理数据库的频次,从而提高应用程序的性能. 缓存内的数据是对物理数据源的复制,应用 ...

随机推荐

  1. 【Linux资源管理】一款优秀的linux监控工具——nmon

    (一)nmon工具概述 nmon是以一个用来做linux服务器监控的工具,通过nmon,可以实现对以下参数的监控: --CPU使用率 --内存.交换空间使用率 --网络使用情况 --磁盘I/O,读写速 ...

  2. Oracle中字符串截取常用方法总结

    substr 函数:截取字符串  语法:SUBSTR(string,start, [length]) string:表示源字符串,即要截取的字符串. start:开始位置,从1开始查找.如果start ...

  3. mvc上传图片(上传和预览)webuploader

    笔者看到mvc最近比较流行,而很多使用一些比较旧的的方法上传图片,再次安利一下百度的webuploader控件吧 webuploader第一步要先下载一些插件这点可以在webuploader官网上下载 ...

  4. 20181030NOIP模拟赛T3

    2017种树 2017共有N棵树从0到N-1标号.现要把这些树种在一条直线上,第i棵树的种植位置X[i]如下确定: X[0] = X[0] MOD L: X[i] = (X[i-1]*A+B) MOD ...

  5. ABAP术语-Sales Document

    Sales Document 原文:http://www.cnblogs.com/qiangsheng/archive/2008/03/13/1103294.html Data base docume ...

  6. (八)netty的SSL renegotiation攻击漏洞

    为了满足安全规范,从http改造成https(见(四)启用HTTPS),然而启用https后就可以高枕无忧了吗?绿盟告诉你:当然不,TLS Client-initiated 重协商攻击(CVE-201 ...

  7. Flask之app实例的参数配置

    说是app实例的配置, 实际也就是flask程序的配置 Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? ...

  8. TImage保存图片到Stream及从Stream中取图片

    因为一个项目,不得不将图片保存到数据库中,需要的时候再从数据库中读取.初时,以为很简单,不就是一个Stream.事实上,也很简单.度娘一下,代码也很多,但,都是坑! 看一下TImage的源,Pictu ...

  9. QP-nano结构分析

    QP-nano是QP的一个裁剪版本,是一个通用的.可移植的.超轻量级的事件驱动型框架.适用于像8051.PIC.AVR.MSP430.68HC01/11/12.R8C/Tiny等资源受限的8位和16位 ...

  10. 基于Python的飞机大战游戏

    前几天决定学Python,上网找了教程看了两天,和C比起来面向对象的特性真的都很便捷,有了类开发各种敌机,子弹什么的都很方便. 在此要感谢开发pygame模块的开发人员,真的很好用(逃 效果图↓ 主函 ...